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ABSTRACT 

Patterns in species distributions and the formation of community assemblages are driven 

by combinations of factors. While, the roles of biotic and abiotic factors in ecological and 

evolutionary phenomena are well-understood, few investigations have focused on these 

interactions involving morphologically dissimilar taxa. My research aimed to determine whether 

interactions were strong among morphologically dissimilar species with widely overlapping 

assemblages in southern Appalachian streams and if environmental conditions contributed to the 

strength of these interactions. First, I conducted field surveys across 8 stream sites in the summer 

of 2018 to estimate the occupancy probabilities and body condition of salamanders in response to 

the presence of heterospecifics and habitat variables. I predicted that salamander occupancy 

estimates and body condition would be lower in streams where fish and/or crayfish were present 

and higher in streams with greater canopy cover, slope, and proportions of larger substrates. My 

results suggested that stream salamander occupancy was driven by habitat variables, not species 

interactions, and their body condition was negatively associated with the presence of fish. 

Second, I used a two-pronged approach (in situ and ex situ methods) to identify the 

potential abiotic and biotic factors that influence the spatial patterns associated with body 

condition and refuge use for both stream salamanders and crayfish. My artificial stream 

experiment involved three species identity treatments (salamander-salamander, crayfish-crayfish, 
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and salamander-crayfish) and two refuge density treatments (low and high) to determine if the 

presence of heterospecifics and lower refuge densities negatively affected body condition, refuge 

use, cohabitation, and survival. Field surveys were performed across four streams to examine the 

influence of macro- and micro- habitat characteristics on interspecific cohabitation between 

salamanders and crayfish. The results from my experiment suggested that the cohabitation and 

refuge use rates, growth, and mortality of salamanders was not affected by the presence of 

crayfish, nor by refuge density. Consistent with the results from my experiment, species identity 

and habitat variables were not associated with cohabitation patterns between salamanders and 

crayfish. Overall, conclusions from my thesis imply that stream salamanders and crayfish may 

simply coexist, but that fish can negatively affect the body condition of salamanders, thereby 

potentially driving salamander assemblages and distributions.  
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FOREWORD 

Chapters 1 and 2 of this thesis cover the spatial and temporal scales of species 

assemblages in streams and the small-scale, short-term mechanistic experiment based on larger 

patterns. Both chapters within this thesis will be submitted to the peer-reviewed journal, 

Freshwater Science. The content of this thesis has been prepared within the formatting and style 

guidelines for publication for this journal
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CHAPTER 1: OCCUPANCY AND INTERSPECIFIC INTERACTIONS OF SALAMANDERS, FISH, AND 

CRAYFISH IN SOUTHERN APPALACHIAN STREAM COMMUNITIES 

 

ABSTRACT 

 

 

Understanding the factors and mechanisms involved in species distributions and 

community assemblages is important for explaining ecological and evolutionary phenomena. 

The interaction between abiotic and biotic factors can be especially important for organisms that 

have specific life history requirements or are experiencing declines. Many amphibian species are 

threatened or near-threatened and stream-breeding salamanders in the southern Appalachians are 

faced with numerous stressors that may alter their diversity and abundance in stream ecosystems. 

Streams often undergo high variations in the quality and quantity of resources, thereby, 

potentially inducing changes in the strength of interactions associated with predation and 

competition. Predation, competition, and the interaction between these factors and abiotic 

conditions have been recognized as important factors regulating abundance and distributions 

among semi-aquatic salamanders. In these stream communities, predatory interactions have been 

suggested to be most important between individuals of different life stages or sizes, whereas, 

competition is more common between similar-sized individuals. Although stream salamander 

responses to the combined effects of abiotic and biotic factors have been documented in the 

southern Appalachians, existing field-based studies do not involve interactions with distantly 

related taxa that are native to this region. The focus of my study was to determine whether 

salamander populations exhibited patterns in occupancy and body condition as a response to the 

presence of heterospecifics and habitat variables, either directly, or as a function of those 

variables driving distributions of these taxa.  
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Salamanders, fish, crayfish, and aquatic habitat data were collected from eight streams in 

two counties (Monroe, TN and Macon, NC) during the summer of 2018. The body condition of 

salamanders was compared across sub-reaches where fish were present or absent. Both single-

species and two-species occupancy models were used to determine if species occurrence was 

dependent on abiotic and biotic factors. My results suggested that salamander occupancy was not 

influenced by the presence of heterospecifics but that their co-occurrence was driven by several 

abiotic factors. However, fish presence negatively influenced the body condition of salamanders, 

indicating potential negative implications for salamander growth or survival. Overall, the lack of 

an effect on salamander occupancy in my study indicates that this is a result of coevolution with 

other salamanders and taxa (crayfish and fish), thus facilitating the potential for local adaptation 

to reduce the costs associated with competition. Furthermore, the strength of predatory 

interactions may not be strong enough in my study sites to influence salamander distributions. 
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INTRODUCTION 

 

The extent to which an organism responds to environmental conditions depends on their 

physiological and ecological limitations, resulting in individuals selecting habitats within these 

constraints that maximize their survival, growth, and reproduction (Werner and Anholt 1983, 

Davis 2005, Gunnarsson et al. 2005, Ellegren and Sheldon 2008, Rittenhouse et al. 2009, 

Isaksson 2015). The concept of “environmental filtering” describes a nested hierarchy of abiotic 

factors acting as “filters” that only allow species with optimal traits for each “filter” to occupy a 

location (Bazzaz 1991, Woodward and Diament 1991). Furthermore, species become more 

specialized as the abiotic conditions become more particular to a location, thus, the availability 

of optimal conditions dictates the direction and strength of biotic interactions (i.e., predation, 

competition, mutualism, parasitism, and commensalism) at these local scales (Sugihara 1980, 

Kolasa and Biesiadka 1984, Kolasa and Strayer 1988, Dunson and Travis 1991). The interaction 

between abiotic and biotic factors may be especially influential for species and populations that 

are specialists, sensitive to changes, or are already in decline. 

Amphibians are the most threatened vertebrates in the world (Stuart et al. 2004). These 

declines are largely attributed to disease outbreaks, habitat destruction, prevalence of 

contaminants, and factors associated with global climate change (Stuart et al. 2004). Amphibian 

biodiversity is high in the southern Appalachians, although, noticeable declines in the abundance 

of salamanders in this region have been reported (Walls 2009, Milanovich et al. 2010, Caruso 

and Lips 2013). Stream-breeding salamander populations in the southern Appalachians are faced 

with numerous stressors that may alter their diversity and abundance in stream ecosystems 

(Crawford and Semlitsch 2008, Peterman and Semlitsch 2009, Vazquez et al. 2009, Milanovich 

et al. 2010, Peterman et al. 2011, Price et al. 2011). Streams often undergo high variations in the 
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quality and quantity of resources, thereby, potentially inducing changes in the strength of 

interactions associated with predation and competition (Vannote et al. 1980, Wipfli et al. 2007, 

Peterman et al. 2008). Stream amphibian diversity and abundance has been negatively associated 

with reductions in canopy cover because higher canopy cover density is important for regulating 

temperature, promoting moisture retention, and hindering UVB radiation exposure (Blaustein 

1998, Caissie 2006, Peterman et al. 2011). Furthermore, amphibian movement is dependent on 

these characteristics due to their susceptibility to desiccation, growth inhibition, and reduced 

survival (Spotila 1972, Sugalski and Claussen 1997, Blaustein 1998, Placyk and Graves 2001). 

Many stream salamanders also rely entirely on cutaneous respiration and, as a result, their 

occurrence is positively associated with the high prevalence of riffles and water flow that 

oxygenate streams (Hairston 1949, Organ 1961, Davic and Orr 1987, Lowe et al. 2004). 

Additionally, salamander microhabitat selection is likely dependent on the availability of large 

substrates because they often use them as refuge during high flow events to avoid being flushed 

downstream (Lowe et al. 2004). Because of these constraints in microhabitat conditions, biotic 

factors can further limit salamanders. 

Predation, competition, and the interaction between these factors and abiotic conditions 

have been recognized as important factors regulating abundance and distributions among semi-

aquatic salamanders (Krzysik 1979, Keen 1982, Southerland 1986). The outcome of both 

competition and variations in environmental conditions in Desmognathine communities likely 

allows for the coexistence of several congeners through spatial niche partitioning (Hairston 1949, 

Organ 1961, Tilley 1968, Peterman et al. 2008). Stream-containing habitats are dynamic and 

offer a gradient of microhabitats ranging from fully aquatic to terrestrial, thereby promoting 

niche partitioning and coexistence. Stream salamanders often occur in high densities and are 
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likely integral as both prey and predators in riparian-aquatic food webs (Davic and Welsh 2004, 

Peterman et al. 2008, Keitzer and Goforth 2013). In these communities, predatory interactions 

usually occur between individuals of different life stages or sizes, whereas, competition is more 

common between similar-sized individuals (Tilley 1968, Hairston 1980, Colley et al. 1989). 

With regards to competition, a dominant species is considered to have greater fitness than the 

other species due to their asymmetrical ability in acquiring a shared limited resource or tolerating 

the presence of a common enemy (Volterra 1926, Lotka 1932). Therefore, it would be logical 

that intraspecific competition would be strongest between individuals of the same size because 

they would require the same habitat and prey size. This has been demonstrated in early studies, 

where smaller salamander species are excluded from the more aquatic and forced to inhabit the 

more terrestrial areas of a stream by larger Desmognathus species (Hairston 1949, Organ 1961, 

Hairston 1987, Crawford and Semlitsch 2007). For example, seal salamander (Desmognathus 

monticola) individuals of the same life stage will compete over habitats containing different 

particle sizes (Roudebush and Taylor 1987). Moreover, if juvenile densities are too high in these 

habitats, then interactions with adults will further limit their habitat selection to avoid potential 

predation (Roudebush and Taylor 1987). Thus, with intraspecific predation, differences in sizes 

may be the most influential in the outcomes of interactions. Additionally, it has been suggested 

that the most plausible interaction between heterospecifics among Desmognathine communities 

is predation (Hairston 1980).   

Competitive and predator-prey interactions have also been exhibited between 

salamanders and either fish or predatory arthropods in experimental studies (Resetarits 1991, 

1995, Ennen et al. 2016). These taxa often have similar diets and microhabitat preferences; 

therefore, competitive asymmetry is likely strong because of their morphological differences and 
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niche requirements. This interaction has been observed between spring salamander 

(Gyrinophilus porphyriticus) larvae and small-sized adult brook trout (Salvelinus fontinalis). In 

which, the latter was the larger predator and negatively influenced spring salamander growth, 

survival, and habitat use (Resetarits 1995). However, the strength of competition between these 

species is expected to decrease as their sizes become more similar, thus, acting as a potential 

driver of coexistence (Werner and Gilliam 1984). A different experiment concluded that 

Appalachian brook crayfish (Cambarus bartonii) did not demonstrate competitive nor predatory 

interactions with Desmognathine salamanders (Resetarits 1991).  

Ecological and evolutionary phenomena can be explained by identifying the underlying 

forces causing patterns of species distributions and community assemblages (McPeek and Holt 

1992, Hastings 1993). Although stream salamander responses to the combined effects of abiotic 

and biotic factors have been documented in the southern Appalachians, existing field-based 

studies do not involve interactions with distantly related taxa that are native to this region. My 

study aimed to assess whether salamander populations exhibited patterns in occupancy and body 

condition as a response to the presence of heterospecifics and habitat variables, either directly, or 

as a function of those variables driving distributions of these taxa. I predicted that salamanders 

captured in stream reaches where fish and crayfish were present would demonstrate lower 

occupancy probabilities and body condition relative to salamanders in reaches where fish and 

crayfish were absent. While, fish and crayfish occupancy probabilities would remain 

unassociated with salamander presence or absence. Additionally, I sought to identify if the 

largest salamander species influenced the occupancy of smaller salamanders as a function of 

either competition or predation.  
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METHODS 

Study Sites 

The southern Appalachian Mountains are recognized as encompassing unique soil, 

geology, landform, and climatic dynamics (Stein et al. 2000). Moreover, these features promote 

salamander biodiversity due to the abundance of streams that are high-gradient, low-order, low 

temperature, and high canopy cover (Petranka 1998, Stein et al. 2000, Kozak and Wiens 2010). 

My study was conducted across two high-gradient and two low-gradient headwater streams in 

western North Carolina (Macon County), in addition to, one high-gradient and two low-gradient 

streams in eastern Tennessee (Monroe County). For these seven sites, a 105-m reach was 

established immediately upstream of road intersections and were divided into three 25-m sub-

reaches, separated by 15-m gaps.  

 

Focal Species  

My study involved some of the most numerically dominant species endemic to southern 

Appalachian headwater streams. In headwater streams consume similar prey items, such as 

invertebrates and amphibian larvae and eggs (Usio and Townsend 2004, Cruz and Rebelo 2007, 

Lodge et al. 2011, Barrett et al. 2012, Sepulveda et al. 2012) and also occupy refuges (e.g. rocks 

and logs; Benvenuto et al. 2008, Keitzer et al. 2013). Our focal species included three species of 

salamanders (Desmognathus monticola [seal salamander], D. quadramaculatus [black-bellied 

salamander], and Eurycea wilderae [Blue Ridge two-lined salamander]), two species of fish 

(Semotilus atromaculatus [common creek chub] and Rhinichthys atratulus [blacknose dace]) and 

one species of crayfish (Cambarus bartonii). Species belonging to the Desmognathus genus are 

lungless and rely entirely on cutaneous respiration as both larvae and adults (Hairston 1949, 
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Organ 1961, Davic and Orr 1987). D. quadramaculatus inhabit densely forested stream channels 

and banks and is the largest salamander species in my study region where adult snout-to-vent 

lengths (SVL) are often between 57 and 94 mm (Bruce 1993, Petranka 1998, Peterman 2008). D. 

monticola are also stream-associated but occupy stream edge microhabitats for frequently and 

their SVL can range from 46-80 mm (Bruce and Hairston 1990, Titus and Larson 1996). Like 

Desmognathines, E. wilderae are lungless and adults exhibit cutaneous respiration, however, 

their gills are highly vascularized during their larval period (Hairston 1949, Organ 1961, Davic 

and Orr 1987). E. wilderae are usually smaller than these Desmognathines with SVL between 30 

and 49 mm (Sever 1999). Compared to D. quadramaculatus and D. monticola, they use 

microhabitats differently where reproductively mature individuals will leave stream areas in mid-

summer after they deposit their eggs and then return in the winter (Bruce 1982, Petranka 1998).  

As for my focal fish species, S. atromaculatus is a small minnow that reaches total 

lengths between 120 and 300 mm in low order streams, whereas, the length of R. atratulus can 

range from 5 to 100 mm (Reed and Moulton 1973, Copes 1978). A distinguishing feature 

between these species is the relatively larger gape of S. atromaculatus, compared to that of R. 

atratulus (Ward and Coburn 2008). C. bartonii are a medium sized (carapace length = 10-40 

mm) crayfish and represent most of the invertebrate biomass in Appalachian headwater streams 

(Woodall and Wallace 1972, Huryn and Wallace 1987, Griffith et al. 1994).  

 

Field surveys 

Surveys were conducted between May and August 2018 and all sites were visited once 

every two weeks during this sampling period for a total of three visits. Stream salamanders were 

collected by performing time-constrained visual encounter surveys (VES) by two people for a 
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total of 20 minutes per sub-reach. During these searches, cobble and other objects were 

overturned and an aquarium net was used to collect salamanders and crayfish. After VES, a haul 

seine was used to collect salamanders, fish and crayfish by placing it 2 m downstream of the 

person flipping rocks and was repeated as we moved upstream for a total of eight times for each 

25-m stretch. SVL and mass were determined for each salamander, which were used to calculate 

body condition. All salamanders, fish, and crayfish were identified to species. Salamanders were 

marked with fluorescent dye using visible implant elastomers (VIE); marks were placed just 

above their forelimbs or hindlimbs after the surveys concluded and then they were released. 

These marks were unique to each sub-reach for a given surveying period within one stream.  

Substrate composition, canopy cover, and the slope of each 25-m reach were also 

measured in situ once per stream sub-reach for the field season after sampling was completed. 

These variables were selected because previous studies found significant associations between 

these variables and occupancy (Lowe et al. 2004, Kiffney and Roni 2007, Ward et al. 2008, 

Cecala et al. 2018). Riparian canopy cover was calculated with a densitometer from the center of 

each sub-reach. Substrate composition was categorized into six groups based on the Wentworth 

scale (sand, silt, gravel, cobble, boulder, bedrock, and organic material; Peoples et al. 2011) and 

were assessed within the wetted boundaries of the entire sub-reach.  

 

Statistical analyses 

Estimates of species occupancy in streams can be important for evaluating the abiotic and 

biotic influences on the distributions of stream species. Recently, occupancy modeling has been 

implemented to evaluate co-occurrence patterns among species and has incorporated site-level 

covariates to identify potential drivers of ecological patterns (Peoples et al. 2011, Peoples and 
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Frimpong 2016, Arnhold et al. 2018, Baecher and Richter 2018, Chen et al. 2019). For my study, 

one out of eight streams were removed from the analyses because it was dry for two of the 

survey dates. To identify the potential abiotic factors involved in species occurrence and co-

occurrence for the remaining sites, I first log-transformed substrate proportions due to 

autocorrelation. I then identified all abiotic variables that had relationships with raw species 

abundance values using a canonical correspondence analysis (CCA; Ter Braak 1986) in RStudio 

v3.3.1 (R Core Team 2016). To determine if the occurrence of all focal species was influenced 

by abiotic characteristics, I estimated their occupancy probabilities using single-species, single-

season occupancy models in Program “PRESENCE” v2.12.17 (MacKenzie et al. 2006, Hines 

2006). I used three basic models for all species, including one where detection is held constant 

across sites but the occupancy probability can vary (Ψ, ρ(.)), one where both occupancy and 

detection are held constant across sites and surveys (Ψ(.), ρ(.)), and the third model where 

occupancy is held constant across sites but the probability of detection can vary among surveys 

(Ψ(.), ρ(t). Each site covariate that was significant from the CCA was incorporated into the first 

model (Ψ, ρ(.)) and all candidate models within 10% of the most robust models were selected for 

model-averaging based on the Akaike Information Criteria (Richmond et al. 2010).  

I used two-species occupancy models to quantify the effect of fish and crayfish presence 

on salamander occupancy and to estimate occupancy of D. monticola and E. wilderae when D. 

quadramaculatus, the larger species, was present (Mackenzie et al. 2004). These models are 

important for estimating the strength and direction of species interactions and determining if 

habitat covariates facilitate these interactions. All parameterization was implemented as in 

Richmond et al. (2010), which estimates the probability of occupancy of  species A (ΨA); 

probability of occupancy of species B when species A is present (ΨBA); probability of occupancy 
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of species B when species A is absent (ΨBa); probability of detection of species A when species 

B is absent (ρA); probability of detection of species B when species A is absent (ρB); probability 

of detection of species A when both species are present (rA); probability of detection of species B 

when both species are present and species A is detected (rBA); and the probability of detection of 

species B when both species are present and species A is not detected (rBa). Using established 

methods, I compared models where the occupancy and detection of species B were independent 

of species A (ΨBA = ΨBa; rBA = rBa) with models where species A influenced the occurrence (ΨBA 

≠ ΨBa; rBA = rBa), detection (ΨBA = ΨBa; rBA ≠ rBa), or both parameters (ΨBA ≠ ΨBa; rBA ≠ rBa) of 

species B (Peoples and Frimpong 2016, Arnhold et al. 2018). To identify the potential abiotic 

factors that are involved in species co-occurrence, site covariates from the most robust single-

species occupancy models were also incorporated into the two-species models. 

Body condition, represented by the scaled mass index (SMI), is a condition index that is 

representative of an individual’s energy reserves by relating mass to length and has been used in 

previous field surveys and experiments involving stream organisms (Davenport and Lowe 2016, 

Ennen et al. 2016, Liles et al. 2017, Hoffacker et al. 2018). This was calculated for salamanders 

(D. quadramaculatus; Peig and Green 2009, 2010) to assess the strength of their interactions 

with fish across sub-reaches where fish were or were not detected during any survey. Salamander 

body condition was compared using analysis of variance (ANOVA) models with the “aov” 

function in RStudio v3.5.2 (R Core Team 2018). I did not evaluate the effects of fish presence on 

the body condition of other focal salamander species (D. monticola and E. wilderae) because 

their body condition data was too limited.  
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RESULTS 

Overall, one salamander (Desmognathus quadramaculatus; n = 212) and one crayfish 

(Cambarus bartonii; n = 1377) species were captured in all sub-reaches (n = 21; Table 1-1). 

Rhinichthys atratulus (n = 117) was captured in more sub-reaches (n = 9 and 7, respectively; 

Table 1-1) than Semotilus atromaculatus (n = 35). One salamander species (Eurycea wilderae; n 

= 23) was detected in 10 sub-reaches, while D. monticola (n = 16) was found in seven sub-

reaches (Table 1-1). As for my raw species co-occurrence data, both D. quadramaculatus and C. 

bartonii were captured in all sub-reaches where fish and other salamander species were detected 

(Table 1-1). D. monticola was found in less sub-reaches (n = 4; Table 1-1) where E. wilderae 

was present than in sub-reaches (n = 5 and 5; Table 1-1) where S. atromaculatus and R. atratulus 

were captured. Lastly, E. wilderae was captured in fewer sub-reaches (n = 2; Table 1-1) where S. 

atromaculatus was detected, compared to the number of sub-reaches (n = 8; Table 1-1) where R. 

atratulus was captured. 

 

Single-species occupancy 

The probability of occupancy for D. quadramaculatus (Table 1-2; Figure 1-1; wi = 

0.493), D. monticola (Table 1-1; Fig. 1-1; wi = 0.518), and crayfish (Table 1-2; Fig. 1-1; wi = 

0.337) was not influenced by site-specific nor survey-specific variables. Single-season, single-

species models indicated that the probability of occupancy for only one species (R. atratulus) 

was driven by a site-specific predictor variable (slope; Table 1-2; Fig. 1-2; wi = 0.407). Stream 

slope negatively influenced the probability of occupancy (Table 1-2; Fig. 1-2). The best models 

for E. wilderae (Table 1-2; Fig. 1-3a; wi = 0.475) and S. atromaculatus (Table 1-2; Fig. 1-3b; wi 

= 0.709) specified that occupancy probabilities were dependent on the surveying period. The 
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occupancy probabilities for E. wilderae (Fig. 1-3a) decreased throughout the field season, 

whereas, S. atromaculatus (Fig. 1-3b) occupancy was greater during the beginning and ending of 

the field season.  

 

Species-interaction occupancy 

My most robust two-species models did not support my hypotheses regarding 

interspecific species interactions. The results from these models suggest that fish (R. atratulus 

and S. atromaculatus) presence did not negatively affect the occupancy of any salamanders 

(Tables 1-3 and 1-4). The best-fit models involving S. atromaculatus and salamander co-

occurrence indicated that its presence did not affect the occupancy probability of D. 

quadramaculatus (Tables 1-3 and 1-4; wi = 0.473), D. monticola (Tables 1-3 and 1-4; wi = 

0.726), or E. wilderae (Tables 1-3 and 1-4; wi = 0.523). Similarly, R. atratulus presence did not 

influence the occupancy of D. quadramaculatus (Tables 1-3 and 1-4; wi = 0.478), D. monticola 

(Tables 1-3 and 1-4; wi = 0.595), or E. wilderae (Tables 1-3 and 1-4; wi = 0.488). Salamander 

occupancy [D. quadramaculatus (Tables 1-3 and 1-4; wi = 0.731), D. monticola (Tables 1-3 and 

1-4; wi = 0.731), and E. wilderae (Tables 1-3 and 1-4; wi = 0.731)] was not significantly 

associated with the presence of crayfish. As for interactions between D. quadramaculatus and 

other salamander species, the most robust models indicated that occupancy probabilities of both 

E. wilderae (Tables 1-3 and 1-4; wi = 0.692) and D. monticola (Tables 1-3 and 1-4; wi = 0.555) 

were not dependent on the presence of D. quadramaculatus. Although there was no apparent 

interaction between my focal species, some species pairs exhibited co-occurrence that was 

influenced by abiotic factors. As expected from the single-species results, the occurrence of R. 

atratulus with E. wilderae and D. monticola was influenced by stream slope. The only other 
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abiotic factors that showed significance with co-occurrence were the proportions of sand and 

cobble for the S. atromaculatus-D. quadramaculatus species pair (Tables 1-3 and 1-4; wi = 

0.473).  

 

Body condition 

The mean body condition of D. quadramaculatus was lower in sites where Semotilus 

atromaculatus was present (Fig. 1-4; F1,186 = 18.59, P < 0.01). However, there was no difference 

between D. quadramaculatus body condition in sites where R. atratulus were present or absent 

(Fig. 1-4; F1,186 = 1.697, P = 0.194), although, mean D. quadramaculatus body condition was 

0.10 g lower in sub-reaches where R. atratulus was absent relative to when they were present 

(Fig. 1-4). 

 

 

DISCUSSION  

My study is the first to provide a broader understanding of the interactions, or lack 

thereof, that occur among salamanders, between salamanders and distantly related species, and 

the involvement of abiotic conditions throughout southern Appalachian headwater stream 

communities. I found that salamander occupancy was unrelated to interspecific interactions, 

however, co-occurrence patterns of some species pairs were dependent on abiotic factors. This 

suggests that negative interactions are not strong enough between these species to influence 

salamander occupancy but that some abiotic factors are important in driving their coexistence. 

However, my results also suggested that competitive or predatory interactions with fish may 

show implications of influencing the growth and survival of salamanders.  
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Salamander occupancy was independent of the presence of fish or crayfish, indicating 

that these species are exhibiting coexistence or that the presence of another species does not 

affect salamander distributions. The only indication of competitive or predatory interactions was 

apparent in the significantly lower salamander (Desmognathus quadramaculatus) body condition 

in sub-reaches where fish (Semotilus atromaculatus) were present relative to where they were 

absent. I also found that the mean body condition of S. atromaculatus was significantly greater 

than the body condition of R. atratulus (Cragg, unpublished data). Furthermore, S. atromaculatus 

have larger gapes than R. atratulus, thus allowing them to consume a broader range of prey size 

classes (Ward and Coburn 2008). This suggests that predation by S. atromaculatus may be the 

most influential on salamander growth and survival because salamanders are allocating energy 

for predator avoidance, rather than obtaining prey. Another possible explanation for salamander 

body condition being dependent on S. atromaculatus, rather than R. atratulus, presence would be 

through either exploitative or interference competition. The larger gape of S. atromaculatus 

relative to R. atratulus may allow them to obtain larger prey that salamanders also consume, thus 

reducing the abundance of, or using aggressive behavior to prevent salamanders from obtaining, 

that resource. Therefore, the strength of interactions between salamanders and fish are likely 

dependent on the size differences between these taxa. Neither Desmognathus monticola or 

Eurycea wilderae occupancy was dependent on the presence of D. quadramaculatus. This was 

likely a result of the smaller salamander species (E. wilderae and D. monticola) partitioning 

habitat to avoid encountering D. quadramaculatus. This result may demonstrate spatial niche 

partitioning, resulting in the coexistence of these species.  

The only abiotic factor used in my study that was influential for single-species occupancy 

was the negative relationship between slope and R. atratulus occupancy. This is likely an 
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indication that R. atratulus is not tolerant of the rapid stream flow in these high gradient reaches 

or that upstream travel is limited by barriers (i.e., large boulders) when stream depth is low 

(Burton and Odum 1945). In addition to affecting R. atratulus occupancy, the co-occurrence of 

this fish species and salamanders (D. monticola and E. wilderae) was also driven by slope. 

Substrate composition was also important in the co-occurrence of other species pairs. 

Proportions of cobble influenced D. monticola and E. wilderae co-occurrence, whereas, both 

sand and cobble were involved in the co-occurrence of D. quadramaculatus with E. wilderae and 

S. atromaculatus. However, the most robust single-species models did not specify that 

occupancy was dependent on these substrate characteristics.  

The results from my species-interaction models involving salamanders and crayfish were 

surprising because a previous study found that their interactions can have impacts on salamander 

health and habitat use (Gamradt et al. 1997). However, a different experiment concluded that the 

presence of crayfish (C. bartonii) did not influence the growth or survival of two salamander 

species (E. bislineata and Gyrinophilus porphyriticus; Resetarits 1991). The inconsistencies with 

the first study is likely because the focal crayfish species in my study and in Resetarits (1991) are 

native to our study systems, whereas, the crayfish species in Gamradt et al. (1997) was a much 

larger, introduced species. As for the occupancy models with both salamanders and fish, those 

results were also unexpected because other studies have observed negative effects on salamander 

distributions (Barr and Babbitt 2002, Lowe et al. 2004). For example, larval salamander 

(Eurycea bislineata) abundance was significantly decreased in streams where fish (Salvelinus 

fontinalis) were present (Barr and Babbitt 2002). However, S. fontinalis and E. bislineata are not 

common in southern Appalachians and were not detected in my sites, which may explain the 

dissimilarity in our results. Fish (S. atromaculatus) negatively affected salamander body 
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condition which is consistent with other studies (Resetarits 1991, Barr and Babbitt 2002, Lowe et 

al. 2004, Ennen et al. 2016). Competitive interactions have been demonstrated to occur between 

S. atromaculatus and D. quadramaculatus in an experiment, where salamanders experienced a 

reduction in body condition as a response to interactions (Ennen et al. 2016). Stream salamanders 

did not exhibit negative interactions, suggesting that these stream species are co-existing. 

However, the capture methods in my study were primarily performed in the most aquatic areas of 

streams and there were substantially more D. quadramaculatus individuals captured compared to 

that of E. wilderae and D. monticola. Because D. quadramaculatus is the largest of these species, 

they usually dominate stream channels, so it is possible that the other smaller species were 

mostly occupying the more terrestrial areas. 

Abiotic factors including, slope and substrate composition (sand and cobble) were 

influential in species occupancy. The negative relationship between R. atratulus occupancy and 

slope is consistent with previous studies that have concluded that this species is either 

uncommon or absent in streams with greater slope (Burton and Odum 1945, Hitt and Roberts 

2012). Stream depth was not measured in my study, but I did observe substantial decreases in 

water depth over the span of my surveys. This decrease in water depth may have further 

contributed to the negative relationship between slope and R. atratulus occupancy because that 

could limit their movement upstream. Substrate characteristics were only influential on species 

co-occurrence and not on single-species occupancy. This highlights the importance of studying 

biotic interactions and abiotic factors together because the coexistence of these species may be 

largely dependent on environmental conditions. One study determined that substrate sizes were 

influential on species detection, but not their occupancy (Cecala et al. 2018). While another 

study found that larger substrates were positively associated with salamander habitat selection 
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and survival (Martin et al. 2012). Thus, if optimal substrate sizes are not limited, then it would be 

expected that this would also facilitate species coexistence. Salamander occupancy was also 

independent of canopy cover density, whereas, another study concluded that they demonstrated a 

significant positive relationship with riparian canopy cover (Peterman et al. 2011). However, 

most of the sites in my study were densely forested, therefore, canopy cover was high and 

homogenous and may not have been a limiting factor for my focal species.  

Stream salamander occurrence was not associated with fish and crayfish presence in my 

study, therefore additional research could be implemented using introduced crayfish and fish to 

determine if salamander occupancy would be affected by species that they haven’t adapted to. 

Such results may reveal whether local adaptation is the major mechanism preventing negative 

species interactions within these communities. Future experimental work should focus on 

species-specific responses of stream salamander body condition to the presence of focal fish 

species in my study. Other future studies should consider evaluating the strength of other abiotic 

variables (i.e., stream velocity, depth, width, and temperature) on species co-occurrence 

throughout time to determine if occupancy is temporally mediated. Additionally, further 

exploration into slope’s effect on R. atratulus occurrence is needed to eliminate other potential 

abiotic factors involved and provide support of steeper slopes influencing the distribution of this 

species.  

Few studies have evaluated interactions between stream salamanders, fish, and crayfish, 

especially in abiotic contexts. My results add to the growing knowledge regarding stream species 

co-occurrence within an occupancy framework. With regards to species occupancy, the lack of 

interaction among salamanders and between other taxa (crayfish and fish) in my study may be a 

result of coevolution, thus facilitating the potential for local adpatation to reduce the costs 
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associated with competition. Furthermore, the strength of predatory interactions may not be 

strong enough in my study sites to influence salamander distributions. However, the presence of 

larger fish species was shown to have potential negative implications for salamander growth or 

survival. Identifying both the abiotic and biotic factors that mediate stream organism occurrence 

is important for predicting and explaining stream community dynamics. With increases in the 

rate of climate change and anthropogenic development, associated abiotic factors may induce 

changes in strength of species interactions and the availability of optimal habitat for stream 

organisms. This may be especially important for southern Appalachian stream amphibians, as 

their populations are faced with numerous stressors that may alter their diversity and abundance 

(Crawford and Semlitsch 2008, Walls 2009, Milanovich et al. 2010, Peterman et al. 2011, Price 

et al. 2011, Caruso and Lips 2013).  

 



20 

 

LITERATURE CITED 

Arnhold, T. R., J. Penha, B. K. Peoples, and L. A. F. Mateus. 2018. Positive co-occurrence 

between feeding-associative savannah fishes depends on species and habitat. Freshwater 

Biology 64:1029–1039. 

Baecher, J. A., and S. C. Richter. 2018. Environmental gradients in old‐growth Appalachian 

forest predict fine‐scale distribution, co‐occurrence, and density of woodland salamanders. 

Ecology and Evolution 8:12940-12952.  

Barr, G. E., and K. J. Babbitt. 2002. Effects of biotic and abiotic factors on the distribution and 

abundance of larval two-lined salamanders (Eurycea bislineata) across spatial scales. 

Oecologia 133:176-185. 

Barrett, K., S. T. Samoray, B. S. Helms, and C. Guyer. 2012. Southern two-lined salamander 

diets in urban and forested streams in western Georgia. Southeastern Naturalist 11:287–296. 

Bazzaz, F. A. 1991. Habitat selection in plants. American Naturalist 137:116-130.  

Benvenuto, C., F. Gherardi, and M. Ilhéu. 2008. Microhabitat use by the white-clawed crayfish 

in a Tuscan stream. Journal of Natural History 42:21–33. 

Blaustein,, A. R., J. M. Kiesecker, D. P. Chivers, D. G. Hokit, A. Marco, L. K. Belden, and A. 

Hatch. 1998. Effects of ultraviolet radiation on amphibians: field experiments. American 

Zoologist 38(6):799-812. 

Bruce, R. C. 1982. Larval periods and metamorphosis in two species of salamanders of the genus 

Eurycea. Copeia 1982(1):117-127. 

Bruce, R. C. 1993. Sexual size dimorphism in Desmognathine salamanders. Copeia 1993(2):513-

518. 

Bruce, R. C., and N. G. Hairston. 1990. Life-history correlates of body-size differences between 

2 populations of the salamander, Desmognathus monticola. Journal of Herpetology 



21 

 

24(2):126-134. 

Burton, G. W., and E. P. Odum. 1945. The distribution of stream fish in the vicinity of Mountain 

Lake, Virginia. Ecology 26:182–194. 

Caissie, D. 2006. The thermal regime of rivers: a review. Freshwater Biology 51(8):1389-1406. 

Caruso, N. M., and K. R. Lips. 2013. Truly enigmatic declines in terrestrial salamander 

populations in Great Smoky Mountains National Park. Diversity and Distributions 19(1):38-

48. 

Cecala, K. K., J. C. Maerz, B. J. Halstead, J. R. Frisch, T. L. Gragson, J. Hepinstall-Cymerman, 

D. S. Leigh, C. R. Jackson, J. T. Peterson, and C. M. Pringle. 2018. Multiple drivers, scales, 

and interactions influence southern Appalachian stream salamander occupancy. Ecosphere 

9(3): 1-19. doi: e02150. 10.1002/ecs2.2150. 

Chen, L. J., Z. F. Shu, W. T. Yao, Y. Ma, W. H. Xiao, and X. Q. Huang. 2019. Combined effects 

of habitat and interspecific interaction define co-occurrence patterns of sympatric 

Galliformes. Avian Research 10:29. doi:10.1186/s40657-019-0164-7. 

Colley, S. A., W. H. Keen, and R. W. Reed. 1989. Effects of adult presence on behavior and 

microhabitat use of juveniles of a Desmognathine salamander. Copeia 1:1-7.  

Copes, F. 1978. Ecology of the creek chub. Reports on the Fauna and Flora of Wisconsin, 12: 21. 

Crawford, J. A., and R. D. Semlitsch. 2008. Abiotic factors influencing abundance and 

microhabitat use of stream salamanders in southern Appalachian forests. Forest Ecology 

and Management 255(5-6):1841-1847. 

Cruz, M. J., and R. Rebelo. 2007. Colonization of freshwater habitats by an introduced crayfish, 

Procambarus clarkii, in the southwest Iberian Peninsula. Hydrobiologia 575:191–201. 

Davenport, J. M., and W. H. Lowe. 2016. Does dispersal influence the strength of intraspecific 



22 

 

competition in a stream salamander? Journal of Zoology 298:46–53. 

Davic, R. D., and L. P. Orr. 1987. The relationship between rock density and salamander density 

in a mountain stream. Herpetologica 43(3):357-361. 

Davic, R. D., and H. H. Welsh. 2004. On the ecological roles of salamanders. Annual Review of 

Ecology Evolution and Systematics 35:405-434. 

Davis, S. K. 2005. Nest-site selection patterns and the influence of vegetation on nest survival of 

mixed-grass prairie passerines. The Condor 107:605–616. 

Dunson, W. A., and J. Travis. 1991. The role of abiotic factors in community organization. The 

American Naturalist 138:1067–1091. 

Ellegren, H., and B. C. Sheldon. 2008. Genetic basis of fitness differences in natural populations. 

Nature 452:169–175. 

Ennen, J. R., J. M. Davenport, and K. F. Alford. 2016. Evidence for asymmetric competition 

among headwater stream vertebrates. Hydrobiologia 772:207–213. 

Gamradt, S. C., L. B. Kats, and C. B. Anzalone. 1997. Aggression by non-native crayfish deters 

breeding in California newts. Conservation Biology 11:793–796. 

Griffith, M. B., S. A. Perry, and W. B. Perry. 1994. Secondary production of macroinvertebrate 

shredders in headwater streams with different baseflow alkalinity. Journal of the North 

American Benthological Society 13(3):345-356. 

Gunnarsson, T. G., J. A. Gill, J. Newton, P. M. Potts, and W. J. Sutherland. 2005. Seasonal 

matching of habitat quality and fitness in a migratory bird. Proceedings of the Royal Society 

B: Biological Sciences 272:2319–2323. 

Hairston, N. G. 1949. The local distribution and ecology of the Plethodontid salamanders of the 

southern Appalachians. Ecological Monographs 19(1):47-73. 



23 

 

Hairston, N. G. 1980. Species packing in the salamander genus Desmognathus – what are the 

interspecific interactions involved. American Naturalist 115(3):354-366. 

Hastings, A. 1993. Complex interactions between dispersal and dynamics: lessons from coupled 

logistic equations. Ecology 74:1362–1372. 

Hines, J. E. 2006. PRESENCE – Software to estimate patch occupancy and related parameters. 

http://www.mbr-pwrc.usgs.gov/software/presence.html. 

Hitt, N. P., and J. H. Roberts. 2012. Hierarchical spatial structure of stream fish colonization and 

extinction. Oikos 121:127-137. 

Hoffacker, M. L., K. K. Cecala, J. R. Ennen, S. M. Mitchell, and J. M. Davenport. 2018. 

Interspecific interactions are conditional on temperature in an Appalachian stream 

salamander community. Oecologia 188(2):623-631. 

Huryn, A. D., and J. B. Wallace. 1989. Production and litter processing by crayfish in an 

Appalachian mountain stream. Freshwater Biology 18:277-286. 

Isaksson, C. 2015. Urbanization, oxidative stress, and inflammation: a question of evolving, 

acclimatizing or coping with urban environmental stress. Functional Ecology 29:913–923. 

Keen, W. H. 1982. Habitat selection and interspecific competition in 2 species of Plethodontid 

salamanders. Ecology 63(1):94-102. 

Keitzer, S., and R. R. Goforth. 2013. Salamander diversity alters stream macroinvertebrate 

community structure. Freshwater Biology 58(10):2114-2125. 

Keitzer, S. C., T. K. Pauley, and C. L. Burcher. 2013. Stream characteristics associated with site 

occupancy by the eastern hellbender, Cryptobranchus alleganiensis alleganiensis, in 

southern West Virginia. Northeastern Naturalist 20:666–677. 

Kiffney, P. M., and P. Roni. 2007. Relationships between productivity, physical habitat, and 



24 

 

aquatic invertebrate and vertebrate populations of forest streams: an information-theoretic 

approach. Transactions of the American Fisheries Society 136:1088–1103. 

Kolasa, J., and E. Biesiadka. 1984. Diversity concept in ecology. Acta Biotheoretica 33(3):145-

162. 

Kolasa, J., and D. Strayer. 1988. Patterns of the abundance of species – a comparison of 2 

hierarchical models. Oikos 53(2):235-241. 

Kozak, K. H., and J. J. Wiens. 2010. Niche conservatism drives elevational diversity patterns in 

Appalachian salamanders. American Naturalist 176:40-54.  

Krzysik, A. J. 1979. Resource-allocation, coexistence, and the niche structure of a streambank 

salamander community. Ecological Monographs 49(2):173-194. 

Liles, L. A., K. K. Cecala, J. R. Ennen, and J. M. Davenport. 2017. Elevated temperatures alter 

competitive outcomes and body condition in southern Appalachian salamanders. Animal 

Conservation 20:502-510. 

Lodge, D. M., M. W. Kershner, and J. E. Aloi. 2011. Effects of an omnivorous crayfish 

(Orconectes Rusticus) on a freshwater littoral food web. Ecology 75:1265–1281. 

Lotka, A. J. 1932. Contribution to the mathematical theory capture I conditions for capture. 

Proceedings of the national academy of sciences of the United States of America 18:172-

178. 

Lowe, W. H., K. H. Nislow, and D. T. Bolger. 2004. Stage-specific and interactive effects of 

sedimentation and trout on a headwater stream salamander. Ecological Applications 

14:164–172. 

Mackenzie, D. I., L. L. Bailey, and J. D. Nichols. 2004. Investigating species co-occurrence 

patterns when species are detected imperfectly. Journal of Animal Ecology 73:546–555. 



25 

 

MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, and J. E. Hines. 2006. 

Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. 

Academic Press, San Diego. 

Martin, S. D., B. A. Harris, J. R. Collums, and R. M. Bonett. 2012. Life between predators and a 

small space: substrate selection of an interstitial space-dwelling stream salamander. Journal 

of Zoology 287:205–214. 

McPeek, M. A., and R. D. Holt. 1992. The evolution of dispersal in spatially and temporally 

varying environments. The American Naturalist 140:1010–1027. 

Milanovich, J. R., W. E. Peterman, N. P. Nibblelink, and J. C. Maerz. 2010. Projected loss of a 

salamander diversity hotspot as a consequence of projected global climate change. PLoS 

ONE 5(8):1-10. 

Organ, J. A. 1961. Studies of the local distribution, life history, and population dynamics of the 

salamander genus Desmognathus in Virginia. Ecological Monographs 31(2):189-223. 

Peig, J., and A. J. Green. 2009. New perspectives for estimating body condition from 

mass/length data: the scaled mass index as an alternative method. Oikos 118:1883–1891. 

Peig, J., and A. J. Green. 2010. The paradigm of body condition: a critical reappraisal of current 

methods based on mass and length. Functional Ecology 24:1323–1332. 

Peoples, B. K., and E. A. Frimpong. 2016. Biotic interactions and habitat drive positive co-

occurrence between facilitating and beneficiary stream fishes. Journal of Biogeography 

43:923–931. 

Peoples, B. K., M. B. Tainer, and E. A. Frimpong. 2011. Bluehead chub nesting activity: a 

potential mechanism of population persistence in degraded stream habitats. Environmental 

Biology of Fishes 90:379–391. 



26 

 

Peterman, W. E., J. A. Crawford, and R. D. Semlitsch. 2008. Productivity and significance of 

headwater streams: population structure and biomass of the black-bellied salamander 

(Desmognathus quadramaculatus). Freshwater Biology 53:347–357. 

Peterman, W. E., J. A. Crawford, and R. D. Semlitsch. 2011. Effects of even-aged timber harvest 

on stream salamanders: support for the evacuation hypothesis. Forest Ecology and 

Management 262:2344–2353. 

Peterman, W. E., and R. D. Semlitsch. 2009. Efficacy of riparian buffers in mitigating local 

population declines and the effects of even-aged timber harvest on larval salamanders. 

Forest Ecology and Management 257(1):8-14. 

Petranka, J. W. 1998. Salamanders of the United States and Canada. Smithsonian Institution 

Press, Washington, DC. 

Placyk, J. S., and B. M. Graves. 2001. Foraging behavior of the red-backed salamander 

(Plethodon cinereus) under various lighting conditions. Journal of Herpetology 35(3):521-

524. 

Price, S. J., K. K. Cecala, R. A. Browne, and M. E. Dorcas. 2011. Effects of urbanization on 

occupancy of stream salamanders. Conservation Biology 25(3):547-555. 

R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, VA. 

Reed, R. J., and J. C. Moulton. 1973. Age and growth of blacknose dace, Rhinichthys atratulus 

and longnose dace, R. cataractae in Massachusetts. The American Midland Naturalist 

90:206-210. 

Resetarits, W. J., J. 1991. Ecological interactions among predators in experimental stream 

communities. Ecology 72:1782–1793. 



27 

 

Resetarits, W. J. 1995. Competitive asymmetry and coexistence in size-structured populations of 

brook trout and spring salamanders. Oikos 73(2):188-198. 

Richmond, O. M. W., J. E. Hines, and S. R. Beissinger. 2010. Two-species occupancy models: a 

new parameterization applied to co-occurrence of secretive rails. Ecological Applications 

20:2036–2046. 

Rittenhouse, T. A. G., R. D. Semlitsch, F. R. Thompson, A. G. Rittenhouse, and R. Thompson. 

2009. Survival costs associated with wood frog breeding migrations: effects of timber 

harvest and drought. Ecology 90:1620–1630. 

Roudebush, R. E., and D. H. Taylor. 1987. Behavioral interactions between 2 Desmognathine 

salamander species – importance of competition and predation. Ecology 68(5):1453-1458. 

Sepulveda, J. A., W. H. Lowe, and P. P. Marra. 2012. Using stable isotopes to test for trophic 

niche partitioning: a case study with stream salamanders and fish. Freshwater Biology 

57:1399–1409. 

Sever, D. M. 1999. Eurycea wilderae. Catalogue of American Amphibians and Reptiles. Society 

for the Study of Amphibians and Reptiles, St. Louis, Missouri. 

Southerland, M. T. Coexistence of 3 congeneric salamanders – the importance of habitat and 

body size. Ecology 67(3):721-728. 

Spotila, J. R. 1972. Role of temperature and water in ecology of lungless salamanders. 

Ecological Monographs 42(1):95-125. 

Stein, B. A., L. S. Kutner, and J. J. Adams, J. S. 2000. Precious heritage: the status of 

biodiversity in the United States. The Nature Conservancy. Oxford University Press, New 

York. 

Stuart, S. N., J. S. Chanson, N. A. Cox, B. E. Young, A. S. L. Rodrigues, D. L. Fischman, and R. 



28 

 

W. Walter. 2004. Science 306:1783-1786. 

Sugalski, M. T., and D. L. Claussen. 1997. Preference for soil moisture, soil pH, and light 

intensity by the salamander, Plethodon cinereus. Journal of Herpetology 31(2):245-250. 

Sugihara, G. 1980. Minimal community structure – an explanation of species abundance 

patterns. American Naturalist 116(6):770-787. 

Ter Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for 

multivariate direct gradient analysis. Ecology 67(5):1167-1179. 

Tilley, S. G. 1968. Size-fecundity relationships and their evolutionary implications in 5 

Desmognathine salamanders. Evolution 22(4):806-816. 

Titus, T. A., and A. Larson. 1996. Molecular phylogenetics of Desmognathine salamanders 

(Caudata: Plethodontidae) a reevaluation of evolution in ecology, life history, and 

morphology. Systematics in Biology 45(4):451-472. 

Usio, N., and C. R. Townsend. 2004. Roles of crayfish: consequences of predation and 

bioturbation for stream invertebrates. Ecology 85:807–822. 

Vannote, R. L., W. G. Minsall, K. W. Cummings, J. R. Sedell, and C. E. Cushing. 1980. The 

river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37:130–137. 

Vazquez, V. M., B. B. Rothermel, and A. P. Pessier. 2009. Experimental infection of North 

American plethodontid salamanders with the fungus Batrachochytrium dendrobatidis. 

Diseases of Aquatic Organisms 84(1):1-7. 

Volterra, V. 1926. Fluctuations in the abundance of a species considered mathematically. Nature 

118:558-560. 

Walls, S. C. 2009. The role of climate in the dynamics of a hybrid zone in Appalachian 

salamanders. Global Change Biology 15(8):1903-1910. 



29 

 

Ward, R. L., J. T. Anderson, and J. T. Petty. 2008. Effects of road crossings on stream and 

streamside salamanders. Journal of Wildlife Management 72:760–771. 

Ward, S. A., and M. M. Coburn. 2008. Stepwise increases in maximum prey size of larval creek 

chubs, Semotilus atromaculatus, in an urbanized Ohio stream. Northeastern Naturalist 

15(3):349-362. 

Werner, E. E., and B. R. Anholt. 1983. Ecological consequences of the trade-off between growth 

and mortality rates mediated by foraging activity. The American Naturalist 142:242–272. 

Werner, E. E., and J. F. Gilliam. 1984. The ontogenetic niche and species interactions in size 

structured populations. Annual Review of Ecology and Systematics 15:393-425. 

Wipfli, M. S., J. S. Richardson, and R. J. Naiman. 2007. Ecological linkages between headwaters 

and downstream ecosystems: transport of organic matter, invertebrates, and wood down 

headwater channels. Journal of the American Water Resources Association 43:72–85. 

Woodall, C. M., Jr., and J. B. Wallace. 1972. The benthic fauna in four small southern 

Appalachian streams. American Midland Naturalist 88:393-407. 

Woodward, F. I., and A. D. Diament. 1991. Functional approaches to predicting the ecological 

effects of global change. Functional Ecology 5(2):202-212. 

 

 

 

 

 

 

 



30 

 

 

 

 

  



31 

 

Table 1-1. Raw counts of sub-reaches (n = 21) where six focal species were detected and their 

co-occurrence patterns among headwater streams in Monroe County, Tennessee and Macon 

County, North Carolina.  

 
 D. 

quadramaculatus 

D. 

monticola 

E. 

wilderae 

R. 

atratulus 

S. 

atromaculatus 

C.  

bartonii 

D. 

quadramaculatus  

21 7  10 9  6 21  

D. monticola  7 7  4  5 5  7  

E. wilderae  10 4  10 8  2  10  

R. atratulus  9  5  8  9  6  9  

S. atromaculatus  6  5 2 6 6  6  

C. bartonii  21  7  10  9  6  21 
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Table 1-2. Single-species occupancy analyses including predictor variables for candidate models 

that were strongly correlated with site-specific covariates. Ψ, p(.): probability of occupancy when 

survey days are held constant; Ψ(.), p(.): probability of occupancy when site-specific covariates 

and survey days are held constant; Ψ, p(T): probability of occupancy when survey days are 

included. Sa: sand; c: cobble; g: gravel; sl: slope. 

 

Model AIC ΔAIC wi k 

D. quadramaculatus      

Ψ, p(.) 47.95 0.00 0.493 2 

Ψ(sa), p(.) 49.95 2.00 0.181 3 

Ψ(.), p(.) 49.95 2.00 0.181 3 

Ψ, p(T) 51.64 3.69 0.078 4 

Ψ(sa,c), p(.) 51.95 4.00 0.067 4 

D. monticola     

Ψ, p(.) 54.92 0.00 0.518 2 

Ψ, p(T) 55.06 0.14 0.483 4 

E. wilderae      

Ψ, p(T) 65.46 0.00 0.475 4 

Ψ(.), p(.) 65.87 0.41 0.387 3 

Ψ, p(.) 67.93 2.47 0.138 2 

R. atratulus     

Ψ(sl), p(.) 65.44 0.00 0.407 3 

Ψ, p(T) 67.10 1.66 0.178 4 

Ψ, p(.) 67.17 1.73 0.172 2 

Ψ(sl,c), p(.) 67.42 1.98 0.151 4 

Ψ(.), p(.) 68.41 2.97 0.092 3 

S. atromaculatus     

Ψ, p(T) 49.02 0.00 0.709 4 

Ψ(g), p(.) 52.07 3.05 0.154 3 

Ψ, p(.) 52.31 3.29 0.137 2 

C. bartonii     

Ψ, p(.) 34.66 0.00 0.337 2 

Ψ, p(T) 36.43 1.77 0.139 3 
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Table 1-3. Two-species occupancy analyses including predictor variables for models that were 

strongly correlated with site-specific covariates. ΨA: probability of occupancy by species A; 

ΨBA: probability of occupancy by species B, given that species A is present; ΨBa: probability of 

occupancy by species B, given that species A is absent; ρA: probability of detection of species A, 

given that species B is absent; ρB: probability of detection of species B; rA: probability of 

detection of species B, given that both are present; rBA: probability of detection of species B, 

given that both are present and species A was detected; rBa: probability of detection of species B, 

given that both are present and species A was not detected. Sa: sand; c: cobble; sl: slope. 

Model AIC ΔAIC wi k 

D. quadramaculatus - D. monticola      

ΨA, ΨBA = ΨBa, ρA, ρB, rA, rBA, rBa  91.07 0.00 0.555 7 

ΨA, ΨBA, ΨBa, ρA, ρB, rA, rBA, rBa 93.07 2.00 0.204 8 

D. quadramaculatus - E. wilderae     

ΨA
(sa,c), ΨBA

(sa,c) = ΨBa
(sa,c), ρA, ρB, rA, rBA, rBa 113.19 0.00 0.692 9 

ΨA
(sa,c), ΨBA

(sa,c), ΨBa
(sa,c), ρA, ρB, rA, rBA, rBa 115.19 2.00 0.254 10 

D. monticola - E. wilderae     

ΨA
(c), ΨBA

(c) = ΨBa
(c), ρA, ρB, rA, rBA, rBa 125.34 0.00 0.543 8 

ΨA
(c), ΨBA

(c), ΨBa
(c), ρA, ρB, rA, rBA, rBa 127.34 2.00 0.200 9 

R. atratulus - D. quadramaculatus      

ΨA, ΨBA = ΨBa, ρA, ρB, rA, rBA, rBa 116.86 0.00 0.478 7 

ΨA
(sl), ΨBA

(sl) = ΨBa
(sl), ρA, ρB, rA, rBA, rBa 118.72 1.86 0.189 8 

ΨA, ΨBA, ΨBa, ρA, ρB, rA, rBA, rBa 118.86 2.00 0.176 8 

R. atratulus - D. monticola      

ΨA
(sl), ΨBA

(sl) = ΨBa
(sl), ρA, ρB, rA, rBA, rBa  108.91 0.00 0.595 8 

ΨA
(sl), ΨBA

(sl), ΨBa
(sl), ρA, ρB, rA, rBA, rBa  110.89 1.98 0.221 9 

R. atratulus - E. wilderae      

ΨA
(sl), ΨBA

(sl) = ΨBa
(sl), ρA, ρB, rA, rBA , rBa  125.70 0.00 0.488 8 

S. atromaculatus - D. quadramaculatus      

ΨA
(sa,c), ΨBA

(sa,c) = ΨBa
(sa,c), ρA, ρB, rA, rBA, rBa  98.00 0.00 0.473 9 

ΨA, ΨBA = ΨBa, ρA, ρB, rA, rBA, rBa 99.21 1.21 0.258 7 

ΨA
(sa,c), ΨBA

(sa,c), ΨBa
(sa,c), ρA, ρB, rA, rBA, rBa 100.00 2.00 0.174 10 

S. atromaculatus - D. monticola     

ΨA, ΨBA = ΨBa, ρA, ρB, rA, rBA, rBa  99.55 0.00 0.726 7 

ΨA, ΨBA, ΨBa, ρA, ρB, rA, rBA, rBa  101.50 1.95 0.274 8 

S. atromaculatus - E. wilderae      

ΨA, ΨBA = ΨBa, ρA, ρB, rA, rBA, rBa 122.36 0.00 0.523 7 

ΨA, ΨBA, ΨBa, ρA, ρB, rA, rBA, rBa 124.33 1.97 0.195 8 

ΨA
(c), ΨBA

(c) = ΨBa
(zc), ρA, ρB, rA, rBA, rBa 124.34 1.98 0.194 8 

C. bartonii – D. quadramaculatus     

ΨA, ΨBA = ΨBa, ρA, ρB, rA, rBA, rBa 72.41 0.00 0.731 7 

ΨA, ΨBA, ΨBa, ρA, ρB, rA, rBA, rBa 74.41 2.00 0.269 8 

C. bartonii – D. monticola     

ΨA, ΨBA = ΨBa, ρA, ρB, rA, rBA, rBa 77.08 0.00 0.731 7 

ΨA, ΨBA, ΨBa, ρA, ρB, rA, rBA, rBa 79.08 2.00 0.269 8 

C. bartonii – E. wilderae     

ΨA, ΨBA = ΨBa, ρA, ρB, rA, rBA, rBa 73.97 0.00 0.731 7 

ΨA, ΨBA, ΨBa, ρA, ρB, rA, rBA, rBa 75.97 2.00 0.269 8 
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Table 1-4. Model-averaged parameter estimates of detection and occupancy probabilities. ΨA: probability of occupancy by species A; 

ΨBA: probability of occupancy by species B, given that species A is present; ΨBa: probability of occupancy by species B, given that 

species A is absent; ρA: probability of detection of species A, given that species B is absent; ρB: probability of detection of species B; 

rA: probability of detection of species B, given that both species are present; rBA: probability of detection of species B, given that both 

species are present and species A was detected; rBa: probability of detection of species B, given that both species are present and 

species A was not detected.  

 Parameters 

Species ΨA ΨBA ΨBa ρA ρB rA rBA rBa 

D. quadramaculatus -          

   D. monticola 1.000 ± 0.000  0.755 ± 0.002   0.368 ± 0.185 0.500 ± 2.500  1.000 ± 0.000 0.123 ± 0.146  

   E. wilderae  1.000 ± 0.000 0.658 ± 0.090  0.757 ± 0.119 0.500 ± 2.500 0.934 ± 0.037 0.298 ± 0.125  

D. monticola -         

   E. wilderae 0.922 ± 0.034 0.245 ± 0.068  0.060 ± 0.079 0.068 ± 0.124 0.212 ± 0.094 0.302 ± 0.108  

R. atratulus -         

   D. quadramaculatus 0.387 ± 0.061 1.000 ± 0.000  0.500 ± 2.500 0.950 ± 0.067 0.534 ± 0.113 0.757 ± 0.157  

   D. monticola  0.555 ± 0.041 0.720 ± 0.052  1.000 ± 0.000 0.051 ± 0.091 0.313 ± 0.144 0.212 ± 0.128  

   E. wilderae  0.497 ± 0.032 0.750 ± 0.048  0.087 ± 0.237 0.086 ± 0.102 0.623 ± 0.111 0.465 ± 0.147  

   S. atromaculatus 0.434 ± 0.028 0.605 ± 0.042  1.000 ± 0.000 0.000 ± 0.000 0.439 ± 0.119 0.550 ± 0.151  

S. atromaculatus -         

   D. quadramaculatus 0.402 ± 0.036 1.000 ± 0.000  0.500 ± 2.500 1.000 ± 0.000 0.435 ± 0.000 0.619 ± 0.000  

   D. monticola 0.381 ± 0.079 0.847 ± 0.114  0.074 ± 0.269 0.057 ± 0.079 0.597 ± 0.154 0.259 ± 0.196  

   E. wilderae  0.092 ± 0.141 0.231 ± 0.156  0.000 ± 0.000 0.000 ± 0.000 0.145 ± 0.664 0.000 ± 0.000  

C. bartonii -         

   D. quadramaculatus 1.000 ± 0.000 0.835 ± 0.169  1.000 ± 0.000 0.500 ± 2.500 0.876 ± 0.052 0.950 ± 0.053  

   E. wilderae 1.000 ± 0.000 0.500 ± 0.184  0.762 ± 0.135 0.500 ± 2.500 1.000 ± 0.000 0.174 ± 0.156  

   D. monticola 1.000 ± 0.000 0.763 ± 0.194  1.000 ± 0.000 0.500 ± 0.000 0.858 ± 0.079 0.071 ± 0.080  

   R. atratulus 1.000 ± 0.000 0.571 ± 0.097  0.891 ± 0.069 0.500 ± 2.500 0.868 ± 0.086 0.571 ± 0.257  

   S. atromaculatus 1.000 ± 0.000 0.394 ± 0.180  0.932 ± 0.069 0.500 ± 2.500 0.786 ± 0.124 0.105 ± 0.176  
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Figure 1-1. Single-species occupancy probabilities by site for A) D. quadramaculatus (DQU), D. 

monticola (DMO), and E. wilderae (EWI); B) R. atratulus (RAT), S. atromaculatus (SAT), and 

C. bartonii (CBA) at each site.  

 

 

 

(A) 

(B) 



36 

 

 

 

 

 

 

 

 

 

 

Figure 1-2. R. atratulus single-species occupancy probabilities and the slope across all sites 

located in Monroe County, Tennessee and Macon County, North Carolina. Surveys were 

conducted between May and July 2018. 
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Figure 1-3. Occupancy probabilities of E. wilderae (a) and S. atromaculatus (b) as a function of 

survey day. 
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Figure 1-4. Mean body condition of D. quadramaculatus compared across sites where R. 

atratulus (RAT) and S. atromaculatus (SAT) were or were not captured at the same sites in 

Monroe County, Tennessee and Macon County, North Carolina. Surveys were conducted 

between May and July 2018. 
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CHAPTER 2: ROLE OF ABIOTIC FACTORS IN THE INTERACTIONS BETWEEN STREAM SALAMANDERS 

AND CRAYFISH IN THE SOUTHERN APPALACHIANS 

 

ABSTRACT 

 

 

The role of species interactions (i.e., predation and competition) in determining species 

distribution and abundance within communities is well-documented in ecological literature. Less 

attention has been on these interactions between morphologically dissimilar taxa in southern 

Appalachian streams, therefore, I investigated this by selecting a ubiquitous and widely 

overlapping assemblage of stream species. I used a two-pronged approach (in situ and ex situ 

methods) to determine the potential abiotic and biotic factors that explain the spatial patterns 

associated with refuge use and body size for salamanders and crayfish. My artificial stream 

experiment compared intra- and inter-specific success and use of refuges at two different refuge 

densities. Field surveys documented factors potentially associated with refuge cohabitation 

between C. bartonii and salamanders (D. quadramaculatus and D. marmoratus) within natural 

streams, in addition to, measuring abiotic factors (i.e., micro- and macro-level habitat). In my 

experiment, the frequency of cohabitation and refuge use, growth, and mortality of D. 

quadramaculatus was not influenced by refuge density, nor by species identity. C. bartonii body 

condition did not differ between low or high refuge densities, nor between the presence of 

hetero- or con-specifics. However, C. bartonii did occupy refuges significantly more frequently 

when refuge densities were higher, compared to when densities were lower. In my field surveys, 

neither abiotic or biotic factors were associated with interspecific cohabitation among 

salamanders and C. bartonii. Although my results failed to detect any competitive or predatory 

interactions between stream salamanders and C. bartonii over refuge, it appeared that refuge 

availability determined how frequently C. bartonii occupied refuges. Overall, these results 
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support existing concepts, with respect to, distantly related species being less likely to compete 

due to their morphological dissimilarities. However, it should be considered that there are some 

niche breadths between salamanders and crayfish such as diet (i.e., crayfish are often more 

omnivorous) which may explain why interactions between them were not strong. Although 

interactions between salamanders and crayfish in my study were not apparent, other biotic (i.e., 

presence of another potential predator or competitor such as fish) and abiotic factors (i.e., 

involving a treatment group with only one refuge available) that were not tested may be more 

influential. Understanding the underlying mechanisms involved in driving ecological responses 

is important for predicting how future changes in abiotic and biotic composition may impact 

these communities.  
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INTRODUCTION  

Species interactions are important for determining the biological organization of natural 

communities (Connell 1983, Schoener 1983, Creed 2006, Rudolf 2008, Bylak 2018). One 

interaction, competition, can be exhibited indirectly, through the exploitation of a limited 

resource or by a species directly interfering with another species’ ability to access a resource 

(Case and Gilpin 1974, Amarasekare 2002, Case et al. 2005). Therefore, competitive interactions 

can control the habitat use, distribution, and composition of species within communities (Connell 

1983, Schoener 1983, Ennen et al. 2016, Bastianelli et al. 2017, Chen et al. 2019). In theory, 

competition is often strongest between closely related species due to their possession of similar 

phenotypes (Aarssen 1983, Abrams 1983). However, there has been evidence of these 

interactions occurring between distantly related taxa, despite their morphological differences 

(Gatz 1979, Schoener and Spiller 1987, Morin et al. 1988, Resetarits 1991, Davenport and Riley 

2017). For example, some lizard species compete for prey with taxa such as spiders and birds 

(Wright 1981, Schoener and Spiller 1987). Larval anurans (Anaxyrus fowleri) have experienced 

significant reductions in their mass in response to competing with insects for pond periphyton 

(Morin et al. 1988). Other distantly related pond species, such as greater bladderwort 

(Utricularia vulgaris), a carnivorous plant species, and bluegill (Lepomis macrochirus) can 

compete for zooplankton (Davenport and Riley 2017). Which interspecific competition between 

distantly related taxa has been documented in terrestrial and pond communities, it has received 

less attention in stream systems.  

Streams are unique due to their complex community structures and diversity of life stages 

and species, yet, there has been little focus on the interactions between distantly related species 

in these systems. Stream species have the potential to fill ecological niches due to their similar 
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life history requirements and adaptations to dynamic habitats (Connell 1980, Davic and Welsh 

2004, Sepulveda et al. 2012). Of the few studies that have considered competitive interactions 

between salamanders and other distantly related species, there are conflicting results for 

interactions between stream salamanders and crustaceans. One experimental study concluded 

that the presence of Appalachian brook crayfish (Cambarus bartonii) did not influence the 

survival nor the growth of spring salamanders (Resetarits 1991). Yet, others have found that 

spatial competition was apparent between recently introduced red swamp crayfish (Procambarus 

clarkii) and California newts (Taricha torosa) (Gamradt and Kats 2006). Considering that some 

of the species from the previous examples are either not common or existent in my study region, 

further investigations need to involve more numerically dominant species in the southern 

Appalachians. Furthermore, competitive interactions between brook crayfish and Desmognathine 

species in this region have not yet been explored. 

Desmognathine salamanders and Appalachian brook crayfish are both ubiquitous 

throughout southern Appalachian headwater streams and with high biomass. Salamanders and 

crayfish in headwater streams do consume similar prey, such as aquatic invertebrates and 

amphibian larvae and eggs, suggesting the potential for resource competition (Usio and 

Townsend 2004, Richmond and Lasenby 2006, Cruz and Rebelo 2007). Both taxa also rely on 

cover objects (e.g. rocks and logs) for refuge from predators, ambushing prey, and anchoring 

during high stream flow events (Lowe et al. 2004, Benvenuto et al. 2008, Keitzer et al. 2013). 

Therefore, individuals may compete for food resources and interstitial spaces within streams. 

While it’s apparent that they coexist at larger spatial scales, it’s not well-understood how they 

interact at the micro-habitat scale, especially with regards to refuge occupancy. It’s possible that 

they exhibit interference competition for food resources or space through territorial defense thus, 
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influencing their refuge-selection. Or, predation may be the most influential interaction between 

these taxa therefore, either preventing the prey taxa from inhabiting a refuge if it’s already 

occupied by the predator taxa or causing prey to occupy it more frequently to avoid the predator 

taxa.  

These interactions can also be dependent on abiotic processes, operating at multiple 

spatial scales; however, evaluations of such dependent relationships are limited (Chesson 2000, 

Fields et al. 2017). If the availability of optimal habitat is limited, then competitive or predatory 

pressure among salamanders and crayfish may be strong. For example, if the density of refuges 

(i.e., large rocks) is limited in a habitat, then competition may be intensified through territorial 

defense, forcing the subordinate individuals or species to occupy the lower quality micro-habitat 

(i.e., areas with no large rocks; Jacobs and Taylor 1992, Camp and Lee 1996, Fero and Moore 

2014). The risk of predation between these taxa may also be higher in this situation due to the 

lack of refuges available for prey to hide from predators (Camp and Lee 1996, Benvenuto et al. 

2008). However, if neither interaction is important, then it’s likely that both species would be 

forced to occupy the same refuge thus, exhibiting their coexistence at these smaller scales. 

Cohabitation may indicate that neither competitive nor predatory pressure are strong enough to 

make them avoid refuges where the other species is present.  

Understanding the mechanisms involved in the patterns of species distributions and 

community assemblages is important for preserving ecosystem function (Naeem et al. 1994, 

Tilman and Downing 1994, Paine 2002, Hooper et al. 2005). Furthermore, salamanders and 

crayfish represent much of the biomass present throughout southern Appalachian headwater 

streams and are essential components throughout these ecosystems (Woodall and Wallace 1972, 

Huryn and Wallace 1987, Peterman et al. 2008). Although interactions between stream 
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salamanders and crayfish have responses have been evaluated, existing field-based studies do not 

lack the interplay with abiotic factors and do not involve taxa native to the southern 

Appalachians. Using a two-pronged approach (both field-based and experimental methods), I 

assessed whether these taxa exhibit predatory or competitive interactions that influence their 

spatial patterns and body condition and if habitat characteristics are involved in these 

interactions. The first objective of my research was to determine experimentally if the strength of 

interactions between salamanders (Desmognathus quadramaculatus) and crayfish (C. bartonii) 

was greater inter- or intra-specifically and if these interactions are dependent on refuge 

availability. First, I hypothesized that the growth, survival, and cohabitation frequency will be 

lower, and that refuge use frequency will be higher between heterospecifics for both taxa. Lastly, 

fewer spatial refuges will either intensify the exiting interactions between heterospecifics or 

induce interactions between individuals if species identity is not significant. The second 

objective of my research was to assess the spatial patterns of Desmognathine salamanders (D. 

marmoratus and D. quadramaculatus) and crayfish in natural streams and determine whether 

cohabitation patterns are associated with macro- and micro- habitat characteristics (such as rock 

size of capture location, substrate composition, channel characteristics, stream depth, stream 

width, and flow). I hypothesized that cohabitation rates between salamanders and crayfish will 

be positively associated with refuge and substrate size because larger rocks support more refuges 

for more individuals. Second, the probability of interspecific cohabitation will have a positive 

relationship with greater stream flow because the prevention of being displaced downstream may 

be more consequential than remaining near a heterospecific. Third, cohabitation between 

salamanders and crayfish will be more frequent in riffles because these areas are shallow and 
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may increase their exposure to terrestrial predators. Lastly, stream size will be positively 

associated with interspecific cohabitation due to potentially greater risks of encountering fish. 

 

METHODS 

Experiment 

For the experimental component of my research, I used artificial streams to evaluate 

potential competitive interactions between Desmognathus quadramaculatus and Cambarus 

bartonii by manipulating refuge density and species identity. I conducted the artificial stream 

experiment at the Tennessee Aquarium Conservation Institute (TNACI) in Chattanooga, 

Tennessee between December 21, 2018 and February 23, 2019. A three-by-two factorial 

experiment was used to manipulate the identity of competitors (two D. quadramaculatus, two C 

bartonii, or one D. quadramaculatus and one C bartonii) with cover object availability (two or 

four objects). Individuals were housed with other subjects of comparable sizes for processing 

before the experiment began.  

A total of 24 Desmognathus quadramaculatus with mean snout-to-vent length (SVL) of 

50 mm (range: 45-55 mm) and 24 Cambarus bartonii with mean carapace length (CPL) of 35 

mm (range: 30-40 mm) were collected from six streams in Monroe Co., Tennessee during 

December 14-16, 2018. All individuals were housed individually in containers at TNACI until 

the experiment was initiated on December 21, 2018. All study individuals were measured for TL 

(total length) and mass, D. quadramaculatus for SVL, and C bartonii for CPL before and after 

the experiment in order to monitor any changes in body condition (Resetarits 1991, Ennen et al. 

2016, Lowe et al. 2018). Change in body condition has been used to measure stream organisms’ 

response to interspecific competition in previous experimental studies in order to assess the 
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strength of these interactions (Resetarits 1991, Davenport and Lowe, 2016, 2018, Liles et al. 

2017, Hoffacker et al. 2018). All experimental animals were marked with a unique fluorescent 

color combination via injection of visible implant elastomers (VIE), which allowed me to 

distinguish individuals during the experiment (Davenport and Lowe, 2016, 2018, Liles et al. 

2017, Hoffacker et al. 2018). The location of the injection site was species-specific; D. 

quadramaculatus received a mark ventrally above their hindlimbs, while C bartonii were marked 

on their ventral abdominal tissue.  

The artificial streams were twenty-four 68 L fiberglass containers with independent 

recirculating systems comprised of the same substrate composition (three-cm-deep layer of sand, 

followed by a single layer of gravel) in order to mimic natural stream conditions (Ennen et al. 

2016, Liles et al. 2017, Hoffacker et al. 2018). Dechlorinated water was added to the streams 

with a depth of 11.5 cm between the substrate and water surface. Water remained at a constant 

flow rate of 40.5 L/min by using pumping systems made out of aquarium pumps, standpipes, and 

PVC tubing. Artificial streams were covered with window screening, tightly bound with binder 

clips to prevent escape. All cover object treatments were randomly assigned to artificial streams 

to ensure that each treatment combination. Each stream received artificial cover objects, 

consisting of 15 cm x 15 cm semi-transparent plexiglass squares that were elevated from the 

substrate by bolts inserted through the corners (McNeely et al. 1990). All species pairs were 

provided with equal quantities of prey items (live mayfly nymphs) every 15 days (Ennen et al. 

2016, Liles et al. 2017, Hoffacker et al. 2018). Eight 12 x 12 mm leaf litter pieces were added to 

all artificial streams during each feeding event for C bartonii. The specific locations of subjects 

were observed, on average, every three days in the morning to evaluate rates of cohabitation and 

monitor their activity and refuge use.  
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Using the ‘lme’ function in the ‘nlme’ package in RStudio v3.5.2 (R Core Team 2018), 

mixed effects models were performed to evaluate the effect of refuge availability and subject 

identity on the interactions between Desmognathus quadramaculatus and Cambarus bartonii 

crayfish. The fixed effects included cover object density (low or high) and species identity (D. 

quadramaculatus or C. bartonii) and the random effects were the artificial stream number and 

the observation day (to account for repeated measures). The response variables for only D. 

quadramaculatus included the frequency of cohabitation occurrences, rate of mortality, and the 

rate of emergence from water. Response variables for both D. quadramaculatus and C. bartonii 

involved the change in body condition and the frequency of refuge use. The rate of mortality, 

emergence from water, and cohabitation for crayfish were excluded from analyses because 

sample sizes were too low. Body condition, represented by the scaled mass index (SMI), was 

calculated for all focal species (Peig and Green 2009, 2010). This condition index is 

representative of an individual’s energy reserves by relating mass to length and has been used in 

previous field surveys and experiments involving stream organisms (Davenport and Lowe 2016, 

Ennen et al. 2016, Liles et al. 2017, Hoffacker 2018). SMI of body condition will be calculated 

as 

 𝑆𝑀𝐼 = 𝑙𝑛(𝑚𝑎𝑠𝑠) 𝑋 (
µ 𝑚𝑎𝑠𝑠

𝑙𝑒𝑛𝑔𝑡ℎ
)

(
𝑠𝑙𝑜𝑝𝑒

𝑟
)

,  

where ln(mass) is the natural log of the body mass and length is the either the SVL (D. 

quadramaculatus) or CPL (C. bartonii) for an individual. µ mass is the sample mean mass and 

slope is ln(mass) over ln(length), which is calculated from an ordinary least squares (OLS) 

regression. The slope is then divided by the Pearson correlation coefficient r (LaBarbera 1989). 

The proportional change in scaled mass was calculated as follows:  

Δ scaled mass = scaled massstart – scaled massend,  
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where scaled massstart represents the proportional measurements obtained before the 

experiment and scaled massend  represents those obtained at the termination of the experiment. 

Cohabitation frequency was calculated by denoting observations where both subjects occupied 

the same refuge with a ‘1’ and a ‘0’ for observations where cohabitation did not occur. The C. 

bartonii-only treatments were removed from the cohabitation frequency analysis because all 

cohabitation values were ‘0’, which resulted in abnormally high variances among treatments. 

The rate of mortality was determined by denoting each deceased individual with a “1” and each 

survived individual with a “0”. Emergence from water represents the rate of which D. 

quadramaculatus were found out of water (i.e., on top of refuges, pipes, and on artificial stream 

walls) and observations where this occurred were represented by a “1” and all other observations 

were denoted with a “0”. 

 

Field surveys 

The focal species for my field-based project included two stream salamander species 

(Desmognathus quadramaculatus and Desmognathus marmoratus) and one species of crayfish 

(Cambarus bartonii). Field surveys were conducted between May 28 and July 7, 2019 to 

augment the cohabitation experiment. One 150-m stretch was established for each of my four 

sites located in Watauga County, NC. Each site was visited four times throughout the summer 

with a minimum of eight days (dependent on the weather) between visits. One rock per meter (n 

= 150) was selected to be flipped during each survey to keep effort standardized across streams 

(Lowe 2012, Lowe et al. 2018). Individuals that were captured were placed in separate Ziploc 

bags, set aside on land (until the entire site was completed), and given an identification number 

in the order in which they were detected. All salamanders and crayfish were identified to species 
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and life stage, measured for length (CL for crayfish and SVL for salamanders), measured for 

mass (wet), and marked with elastomer. Each salamander was given a unique VIE color 

combination ventrally above limbs and crayfish were batch-marked (i.e., all individuals get the 

same color, which varied based on the week the site was visited) on their ventral abdominal 

tissue.  

The macrohabitat and microhabitat of each flipped rock was categorized, regardless of 

whether an individual was present underneath. This involved recording the alpha dimension of 

the rock that was overturned, in addition to categorizing the surrounding substrate composition 

within a 50 cm radius of the center of each overturned rock. Each area was also categorized at 

the macro scale as being within a riffle, run, or pool within 1 m of the rock’s center (Grant et al. 

2009, Lowe 2012, Cecala et al. 2014, Lowe et al. 2018). After all individuals were processed and 

released, the stream depth, width, and flow were measured at the 0-m, 50-m,100-m, and 150-m 

marks along the study reach. Depth and flow were measured in intervals of 25%, 50%, and 75% 

across the width of the stream and the width was measured for both bankfull and wetted widths.  

I compared the probability of cohabitation of stream salamanders and crayfish with the 

lengths of individuals, rock diameter, proportion of each substrate type (i.e. silt, sand, gravel, 

cobble, boulder, and bedrock), stream size (bankfull width, wetted width, and depth), and stream 

flow using logistic regression models implemented by the ‘glm‘ function in RStudio (v3.5.2). 

The probability of cohabitation was calculated by denoting observations where both subjects 

occupied the same refuge with a ‘1’, while observations were represented by a ‘0’ if individuals 

were not occupying the same refuge. The values for substrate proportions were autocorrelated, 

thus, values were log-transformed to avoid violating the assumptions for regression models. 
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Linear regression models were implemented to evaluate the factors influencing the number of 

individuals cohabitating together using the ‘lm’ function in RStudio (v3.5.2). 

 

RESULTS 

Experiment 

Desmognathus quadramaculatus mortality was not affected by species identity (n = 3; t = 

-0.536, P = 0.602; Tables 2-1 and 2-2; Figure 2-1b) nor refuge density treatments (t = 0.00, P = 

0.715; Tables 2-1 and 2-2; Fig. 2-1b). While D. quadramaculatus body condition generally 

increased during the experiment, there was no significant difference among refuge density 

(Tables 2-1 and 2-2; Fig. 2-2a; t = 0.-0.739, P = 0.939) or species identity treatments (Tables 2-1 

and 2-2; Fig. 2-2a; t = -0.857, P = 0.960). The mean frequency of refuge-use for D. 

quadramaculatus was not significantly different between the D. quadramaculatus-only and D. 

quadramaculatus-Cambarus bartonii treatments (t = -0.165, P = 0.869; Table 2-2; Fig. 2-2b), nor 

was it different between low and high refuge densities (t = 0.643, P = 0.521; Table 2-2; Fig. 2-

2b). There was no significant difference between mean cohabitation frequency for D. 

quadramaculatus between species identity treatments (Tables 2-1 and 2-2; Fig. 2-1a; t = -0.205, 

P = 0.838) nor refuge density treatments (Tables 2-1 and 2-2; Fig. 2-1a; t = 1.531, P = 0.128). 

The mean frequency of emergence from the water for D. quadramaculatus was not influenced by 

species identity (Tables 2-1 and 2-2; Fig. 2-1c; t = 0.595, P = 0.553) nor refuge density 

treatments (Tables 2-1 and 2-2; Fig. 2-1c; t = -1.265, P = 0.208). Cambarus bartonii body 

condition was not affected by species identity (Tables 2-1 and 2-3; Fig. 2-3b; t = -0.857, P = 

0.414) and refuge densities (Tables 2-1 and 2-3; Figure 2-3b; t = -0.739, P = 0.479). The mean 

frequency of refuge use for C. bartonii was greater in high refuge density (0.600 ± 0.084) 
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treatments than in the low density (0.462 ± 0.083) treatments (Tables 2-1 and 2-3; Fig. 2-3a; t = -

2.483, P = 0.014). C. bartonii frequency of refuge use did not differ between the C. bartonii-only 

and D. quadramaculatus-C. bartonii crayfish treatments (Tables 2-1 and 2-3; Fig. 2-3a; t = 

0.375, P = 0.708).  

 

Field surveys 

The probability of interspecific cohabitation for Desmognathus quadramaculatus was not 

dependent on the following environmental factors: silt (0.068; Table 2-4; Figure 2-4), sand 

(0.220; Table 2-4; Figure 2-4), gravel (0.435; Table 2-4; Figure 2-4), cobble (0.400; Table 2-4; 

Figure 2-4), boulder (-0.081; Table 2-4; Figure 2-4), and bedrock (0.012; Table 2-4; Figure 2-4), 

wetted width (-0.175; Table 2-4; Figure 2-5), bankfull width (-0.199; Table 2-4; Figure 2-5), 

stream depth (1.469; Table 2-4; Figure 2-5), stream flow (0.658; Table 2-4; Figure 2-5), refuge 

diameter (-0.010; Table 2-4; Figure 2-8a), riffles (0.036; Table 2-5; Figure 2-10a), runs (0.146; 

Table 2-5; Figure 2-10a), and pools (0.081; Table 2-5; Figure 2-10a). Additionally, the SVL of 

salamanders did not determine their probability of interspecific cohabitation (-0.042; Table 2-4; 

Figure 2-9a). Interspecific cohabitation for crayfish was also not influenced by the following 

environmental factors: silt (0.009; Table 2-4; Figure 2-6), sand (0.129; Table 2-4; Figure 2-6), 

gravel (0.286; Table 2-4; Figure 2-6), cobble (0.619; Table 2-4; Figure 2-6), boulder (-0.050; 

Table 2-4; Figure 2-6), and bedrock (0.111; Table 2-4; Figure 2-6), wetted width (-0.130; Table 

2-4; Figure 2-7), bankfull width (-0.148; Table 2-4; Figure 2-7), stream depth (0.016; Table 2-4; 

Figure 2-7), stream flow (0.812; Table 2-4; Figure 2-7), refuge diameter (-0.089; Table 2-4; 

Figure 2-8b), riffles (0.100; Table 2-5; Figure 2-10b), runs (0.346; Table 2-5; Figure 2-10b), and 
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pools (0.139; Table 2-5; Figure 2-10b). The carapace length of crayfish did not influence their 

probability of cohabitating with salamanders (-0.011; Table 2-4; Figure 2-9b). 

 

DISCUSSION 

Experiment 

The results from my experiment suggest that potential agonistic interactions between 

Desmognathus quadramaculatus and Cambarus bartonii are no stronger than intraspecific 

interactions in response to refuge availability. D. quadramaculatus did not differentiate in rate of 

occupying refuges when in the presence of conspecifics or heterospecifics, nor by the availability 

of refuge. Species identity did not influence the frequency of refuge use for C. bartonii, either. 

However, there was a significant positive relationship between high refuge density and the 

frequency of occupying a refuge. Cohabitation frequencies for D. quadramaculatus did not differ 

in the presence of either species, thus my competition hypothesis for spatial refuges was not 

supported. Though, cohabitation was rare among all subjects, which prevented us from having a 

large sample size to compare cohabitation rates between treatments. Refuge availability did not 

appear to limit the rates of cohabitation between D. quadramaculatus and C. bartonii, nor did it 

negatively impact the survival of individuals in the stream assemblages in my study. 

Surprisingly, D. quadramaculatus did not spend more time out of the water in the presence of C. 

bartonii, nor were there indications of C. bartonii presence affecting salamander survival. Lastly, 

the change in body condition for both D. quadramaculatus and C. bartonii was not influenced by 

refuge density nor by species identity.  

Cambarus bartonii in my experiment occupied refuges significantly more frequently 

when there were greater densities of refuges available. Because species identity did not influence 
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their rate of refuge use, the presence of another individual, regardless of species, may have 

contributed to refuge density’s effect on refuge use. For example, if subjects occupied more than 

one refuge during the experiment (instead of establishing territory over a single refuge), then 

they may associate those refuges with the presence of another individual. Thus, it is possible that 

they avoid those refuges more frequently to reduce the potential of encountering another 

individual, which the lower refuge density (two refuges) treatment would not provide enough 

refuge options as the higher refuge density (four refuges) treatment. A previous experiment 

evaluated the effects of refuge availability on social behavior and habitat choice in the crayfish, 

Orconectes virilis (Fero and Moore 2014). Crayfish did not spend significantly more time 

occupying refuges in areas with higher refuge density than in the lower refuge density areas 

(Fero and Moore 2014). However, crayfish in their experiment did occupy refuges significantly 

more frequently during the day and in high refuge density areas (Fero and Moore 2014). If C. 

bartonii exhibit similar occupancy behavior as O. virilis, then this may provide a possible 

explanation for the higher rate of refuge use in my experiment because observations only 

occurred in the morning.  

If agonistic behaviors towards Desmognathus quadramaculatus were used by Cambarus 

bartonii, I expected salamanders to escape from the water or show physical signs of injury. 

Previous competition experiments involving crayfish have resulted in highly aggressive actions 

imposed on salamander competitors, thus allowing crayfish to obtain the resource of interest 

(Gamradt and Kats 2006, Savvides and Louca 2015). California newts (Taricha torosa) spent 

significantly more time out of water in the presence of red swamp crayfish (Procambarus 

clarkii) than with conspecific newts (Gamradt et al. 1997). Additionally, T. torosa were 

repeatedly attacked by P. clarkii and exhibited wounds on their limbs and tails from such 
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interactions (Gamradt et al. 1997). My results may differ from those for California newts likely 

because P. clarkii are a much larger, non-native crayfish species, whereas, the crayfish species 

used in my experiment (C. bartonii) are smaller and native. Because both D. quadramaculatus 

and C. bartonii are native to the areas where their ranges overlap, it is likely that these two 

species coexist through behavioral adaptations to reduce the costs associated with competition.  

The lack of a change in body condition for both of my focal species is consistent with 

those of Resetarits (1991), which concluded that the presence of Cambarus bartonii did not 

influence the growth of two salamander species and conversely salamander presence did not 

affect crayfish growth. This is an indication that they co-occur and competition does not exist 

between these taxa. In our experiment, D. quadramaculatus individuals only gained in body 

condition, while several crayfish individuals experienced a decrease in body condition over the 

course of the experiment. Though not significant, C. bartonii appeared to exhibit an increase in 

body condition in the low refuge density treatment and a decrease in body condition in the high 

refuge density treatment.  

My experiment points to several avenues for future studies. First, my experiment only 

had two different refuge densities, so manipulating additional refuge densities along a wider 

gradient (i.e., refuge quantities ranging from one to five) could explore the relationship between 

spatial competition among Desmognathus quadramaculatus and Cambarus bartonii. It is entirely 

possible that refuge availability does not influence interactions between salamanders and C. 

bartonii. Second, resource competition based on prey availability may be more influential on the 

strength of interactions between these species. Because C. bartonii and D. quadramaculatus 

often consume similar prey items, if this resource is limited or if more predatory stream 

organisms (i.e. fish) are present, then the effects of competition may be stronger. Although both 
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C. bartonii and D. quadramaculatus are both numerically dominant in streams, they may not 

frequently interact with each other.  

 

Field surveys 

 I conducted field surveys to determine if habitat characteristics and the sizes of 

individuals influenced the co-occurrence of crayfish and salamanders. The results from the field 

component indicate that neither biotic nor abiotic factors are influencing the probability of 

cohabitation for stream salamanders and crayfish. Though substrate composition did not have a 

significant effect on cohabitation, there was a slight negative relationship between the probability 

of interspecific cohabitation and the proportion of sand and the proportion of cobble surrounding 

refuges for salamanders. Cohabitation for crayfish had a minor negative trend with the 

proportion of cobble and the proportion of boulder. I anticipated a significantly negative trend 

with smaller substrate particles for both salamanders and crayfish because it can reduce the 

amount of refuge available. However, I did not find this relationship from my survey data. If this 

result was significant, it would have been consistent with a previous study that discovered a 

negative relationship between finer substrates and some stream salamander species (Lowe et al. 

2004). It is possible that the streams used in my study consisted of high enough proportions of 

larger rocks (i.e., cobble and boulder) that it was not a limiting factor. Future studies should 

consider incorporating stream sites that have greater variation in substrate composition to further 

evaluate whether this influences interspecific cohabitation.  

Interspecific cohabitation for salamanders had a non-significant negative relationship 

with bankfull width and cohabitation for both salamanders, and crayfish exhibited a slight 

positive association with stream flow. The size of refuges did not have a significant effect on 
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cohabitation for neither salamanders nor crayfish. But crayfish cohabitation had a slightly 

negative trend with the size of the refuge they were occupying. Though not significant, both 

salamander and crayfish cohabitation probabilities exhibited a negative trend with SVL and CPL. 

This suggests that larger individuals may cohabitate less frequently than smaller individuals, 

however, this was likely due to the small sample size of adults. Some larger and dominant 

crayfish species have been observed to exhibit more aggression and territoriality over refuges 

than the smaller, more subordinate individuals (Fero and Moore 2014). Previous work suggests 

that larger D. quadramaculatus individuals likely aggressively take over refuges occupied by 

smaller individuals, causing those individuals to wander more or move between refuges more 

frequently (Camp and Lee 1996). Furthermore, smaller salamanders likely encounter crayfish 

more frequently than larger adults and consequently, have a greater probability of becoming 

consumed due to their small size and recurrent wandering. Thus, survival of D. quadramaculatus 

larvae and juveniles may be driven by the prevalence of refuges and may be susceptible to higher 

ratios of C. bartonii and adult D. quadramaculatus abundance to refuge densities. Overall, the 

influence of abiotic factors on interspecific interactions was not apparent, but there are other 

avenues for future research involving other abiotic variables that were not tested in my study. 

Additionally, future studies should consider performing an ex-situ study to determine if 

individuals with greater size differences exhibit cohabitation patterns differently than similar-

sized individuals and if abiotic conditions are more important in these interactions. 

 Cohabitation may be a potential indicator of coexistence between species but could have 

consequences for shared prey in a community. Both crayfish and salamanders are distantly 

related yet utilize similar resources (i.e., prey and refuge) while not exhibiting strong competitive 

interactions. However, individuals in my study may inhabit the same refuge because prey 
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densities are higher in those specific locations. Although these two predator species did not 

appear to affect each other’s distribution, they can affect prey (i.e., larval salamanders and 

macroinvertebrates) in unexpected ways (Rudolf 2006, Wooster et al. 2011). For example, when 

larger predators are not present, smaller conspecific predators exhibited increased densities and, 

thus a decrease in prey survival (Rudolf 2006). Conversely, the presence of multiple predators 

has been demonstrated to reduce the risk of predation for prey, which may cause substantial 

increases in these prey populations (Vance-Chalcraft and Soluk 2005). While I did not measure 

responses in prey, the lack of interference between my predatory focal species may lead to risk 

enhancement. The effects of the presence of multiple predators on prey should be further 

explored by incorporating prey (i.e., larval salamanders or macroinvertebrates) density as a 

response variable to treatments consisting of the presence of either only one species or two 

species in artifical stream experiments.  

My study is one of the first to examine that relationship using both a field and 

experimental approach. Using this combined approach allowed me to evaluate the potential 

abiotic and biotic factors driving the microhabitat use and spatial distributions of salamanders in 

natural stream systems, while also testing for the effects of specific variables in a controlled 

experimental setting. My results indicate that despite having overlapping resource requirements 

and numerical dominance in headwater streams, competition for spatial refuges between my 

focal species is weak. This supports previous studies proposing the concept that distantly related 

species are less likely to compete because of their morphological differences as a result of local 

adaptation to minimize competition (Case and Gilpin 1974, Gatz 1979, Connell 1980). Due to 

the complex interactions existing in stream community structures, it is important for ecologists to 

identify the factors involved in the ecological responses exhibited by these organisms.   
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Table 2-1. Effects of refuge density and species identity on salamanders and crayfish in artificial 

stream experiments. ‘Refuge-use’ represents the frequency of subjects using a refuge, ‘Body 

Condition’ represents the change in body condition, ‘Cohabitation’ indicates the frequency of 

subjects sharing the same refuge with another individual, ‘Emergence’ represents the frequency 

of salamanders leaving the water, and ‘Mortality’ represents the mean frequency of salamander 

survival. ‘Subject Identity’ indicates whether subjects in a treatment were of the same species, 

‘Intraspecific’, or of different species, ‘Interspecific’. All values represent means ±1 SE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Refuge Density Species Identity 

 High Low Intraspecific Interspecific 

Salamanders     

    Refuge-use 0.302 ± 0.076 0.324 ± 0.072 0.277 ± 0.066 0.35 ± 0.081 

    Body Condition 0.578 ± 0.126 0.592 ± 0.121 0.59 ± 0.100 0.581 ± 0.143 

    Cohabitation 0.014 ± 0.021 0.046 ± 0.020 0.024 ± 0.017 0.035 ± 0.023 

    Emergence 0.237 ± 0.073 0.152 ± 0.073 0.234 ± 0.065 0.155 ± 0.080 

    Mortality 0.188 ± 0.117 0.125 ± 0.117 0.063 ± 0.105 0.250 ± 0.127 

Crayfish     

    Refuge-use 0.600 ± 0.084 0.462 ± 0.083 0.495 ± 0.074 0.566 ± 0.092 

    Body Condition -0.094 ± 0.264 0.364 ± 0.281 0.152 ± 0.260 0.119 ± 0.284 
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Table 2-2. Effects of refuge density, species identity, the interactive effect on salamander refuge 

use, body condition, frequency of cohabitation, frequency of emergence from the water, and 

mortality in artificial stream experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 df t P 

Salamanders    

  Refuge-use    

    Refuge Density 1 0.643 0.521 

    Subject Identity 1 -0.165 0.869 

    Interaction 1 -1.678 0.096 

    Residuals 145   

  Body Condition    

    Refuge Density 1 -0.739 0.939 

    Subject Identity 1 -0.857 0.960 

    Interaction 1 1.291 0.228 

    Residuals 9   

  Cohabitation    

    Refuge Density 1 1.531 0.128 

    Subject Identity 1 -0.205 0.838 

    Interaction 1 -1.412 0.1601 

    Residuals 145   

  Emergence    

    Refuge Density 1 -1.265 0.208 

    Subject Identity 1 0.595 0.553 

    Interaction 1 0.469 0.640 

    Residuals 144   

  Mortality    

    Refuge Density 1 0.000 1.000 

    Subject Identity 1 -0.536 0.602 

    Interaction 1 -0.379 0.711 

    Residuals 12   



67 

 

Table 2-3. Effects of refuge density, species identity, the interactive effect on body condition and 

refuge-use of crayfish in artificial stream experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 df t P 

Crayfish    

  Refuge-use    

    Refuge Density 1 -2.483 0.014 

    Subject Identity 1 0.375 0.708 

    Interaction 1 0.393 0.695 

    Residuals 149   

  Body Condition    

    Refuge Density 1 -0.739 0.479 

    Subject Identity 1 -0.857 0.414 

    Interaction 1 1.291 0.229 

    Residuals 9   
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Table 2-4. Estimates from logistic regression models of interspecific cohabitation between 

salamanders and crayfish in response to environmental variables during field surveys conducted 

in Caldwell County, NC. ‘Substrate composition’ represents the proportion of silt, sand, gravel, 

cobble, boulder, and bedrock within a 0.5-m radius of the center of the refuge; ‘Stream 

characteristics’ represents the depth, width (bankfull and wetted), and flow of the stream 

measured every 50 m along site; ‘Rock diameter’ is the largest diameter of the refuge; and 

‘Length of individual’ is the SVL or CPL of the cohabitating subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 df Estimate ± SE z P 

Salamanders     

     Substrate composition     

Silt 112 0.068 ± 0.040 1.709 0.087 

Sand 112 0.220 ± 0.226 0.971 0.332 

Gravel 112 0.435 ± 0.504 0.862 0.389 

Cobble 112 0.400 ± 0.493 0.811 0.418 

Boulder 112 -0.081 ± 0.044 -1.851 0.064 

Bedrock 112 0.012 ± 0.063 0.191 0.849 

     Stream characteristics     

Depth 112 1.469 ± 5.610 0.262 0.793 

Bank 112 -0.199 ± 0.226 -0.882 0.378 

Wet 112 -0.175 ± 0.365 -0.480 0.631 

Flow 112 0.658 ± 0.561 1.174 0.24 

     Rock diameter 109 -0.010 ± 0.050 -0.196 0.845 

     Length of individual 104 -0.042 ± 0.030 -1.417 0.156 

     

Crayfish     

     Substrate composition     

Silt 68 0.009 ± 0.043 0.206 0.837 

Sand 68 0.129 ± 0.148 0.872 0.383 

Gravel 68 0.286 ± 0.388 0.737 0.461 

Cobble 68 0.619 ± 0.652 0.949 0.343 

Boulder 68 -0.050 ± 0.046 -1.107 0.268 

Bedrock 68 0.111 ± 0.084 1.327 0.185 

     Stream characteristics     

Depth 68 0.016 ± 6.086 0.003 0.998 

Bank 68 -0.148 ± 0.220 -0.675 0.500 

Wet 68 -0.130 ± 0.385 -0.338 0.735 

Flow 68 0.812 ± 0.710 1.145 0.252 

     Rock diameter 67 -0.089 ± 0.058 -1.517 0.129 

     Length of individual  62 -0.011 ± 0.035 -0.327 0.743 
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Table 2-5. Mean probabilities of interspecific cohabitation for salamanders and crayfish across 

macro-habitat types during field surveys conducted in Caldwell County, NC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Mean SE 

Salamanders   

     Riffle 0.036 0.036 

     Run 0.146 0.051 

     Pool 0.081 0.045 

   

Crayfish   

     Riffle 0.100 0.100 

     Run 0.346 0.095 

     Pool 0.139 0.058 
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Figure 2-1. D. quadramaculatus mean frequency of cohabitation (a), mean frequency of 

mortality (b), and mean frequency of emergence of from water (c) across refuge density and 

species identity treatment combinations during artificial stream experiments. SSH: only 

salamander subjects with high refuge densities, SSL: only salamander subjects with low refuge 

densities, SCH: salamander and crayfish subjects with high refuge densities, and SCL: 

salamander and crayfish subjects with low refuge densities. 
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Figure 2-2. D. quadramaculatus mean change in body condition (a) and mean frequency of 

refuge use (b) across refuge density and species identity treatment combinations during artificial 

stream experiments. SSH: only salamander subjects with high refuge densities, SSL: only 

salamander subjects with low refuge densities, SCH: salamander and crayfish subjects with high 

refuge densities, and SCL: salamander and crayfish subjects with low refuge densities. 
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Figure 2-3. C. bartonii mean frequency of refuge use (a) and mean change in body condition (b) 

across refuge density and species identity treatment combinations during artificial stream 

experiments. CCH: only crayfish subjects with high refuge densities, CCL: only crayfish subjects 

with low refuge densities, CSH: crayfish and salamander subjects with high refuge densities, and 

CSL: crayfish and salamander subjects with low refuge densities. 
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Figure 2-4. The effect of substrate composition on the probability of cohabitation of salamanders 

during spring field surveys conducted among 4 streams in Caldwell County, NC between May 

28 and July 7, 2019: (a) silt, (b) sand, (c) gravel, (d) cobble, (e) boulder, and (f) bedrock. 
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Figure 2-5. The effect of stream characteristics on the probability of cohabitation of salamanders 

during field surveys conducted among 4 streams in Caldwell County, NC between May 28 and 

July 7, 2019: (a) flow, (b) depth, (c) wetted width, and (d) bankfull width. 
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Figure 2-6. The effect of substrate composition on the probability of cohabitation of crayfish 

during field surveys conducted among 4 streams in Caldwell County, NC between May 28 and 

July 7, 2019: (a) silt, (b) sand, (c) gravel, (d) cobble, (e) boulder, and (f) bedrock. 
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Figure 2-7. The effect of stream characteristics on the probability of cohabitation of crayfish 

during field surveys conducted among 4 streams in Caldwell County, NC between May 28 and 

July 7, 2019: (a) flow, (b) depth, (c) wetted width, and (d) bankfull width. 
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Figure 2-8. The effect of refuge size (rock diameter) on (a) salamander and (b) crayfish 

probability of cohabitation during field surveys conducted among 4 streams in Caldwell County, 

NC between May 28 and July 7, 2019. 
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Figure 2-9. The effect of an individual’s length (SVL or CPL) on (a) salamander and (b) crayfish 

probability of cohabitation during field surveys conducted among 4 streams in Caldwell County, 

NC between May 28 and July 7, 2019. 
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Figure 2-10. Differences in mean probability of interspecific cohabitation for (a) salamander and 

(b) crayfish across macro-habitat types (riffle, run, and pool) during field surveys conducted 

among 4 streams in Caldwell County, NC between May 28 and July 7, 2019. 
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